23.9 C
Los Angeles
Saturday, July 27, 2024

Ultrahigh-mobility semiconducting epitaxial graphene on silicon carbide

NatureUltrahigh-mobility semiconducting epitaxial graphene on silicon carbide


  • Schwierz, F., Pezoldt, J. & Granzner, R. Two-dimensional supplies and their prospects in transistor electronics. Nanoscale 7, 8261–8283 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Bommel, A. J., Crombeen, J. E. & Van Tooren, A. LEED and Auger electron observations of the SiC(0001) floor. Surf. Sci. 48, 463–472 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Norimatsu, W. & Kusunoki, M. Development of graphene from SiC{0001} surfaces and its mechanisms. Semicond. Sci. Technol. 29, 064009 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nair, M. et al. Band hole opening induced by the structural periodicity in epitaxial graphene buffer layer. Nano Lett. 17, 2681–2689 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Turmaud, J.-P. Variable Vary Hopping Conduction within the Epitaxial Graphene Buffer Layer on SiC(0001). Georgia Institute of Expertise, PhD thesis (2018).

  • Chen, A., Hutchby, J., Zhirnov, V. & Bourianoff, G. (eds) Rising Nanoelectronic Gadgets (Wiley, 2015).

  • de Heer, W. A., Berger, C. & First, P. N. Patterned skinny movie graphite units and technique for making similar. US patent 7,015,142 B2 (2006).

  • Berger, C. et al. Ultrathin epitaxial graphite: 2D electron fuel properties and a route towards graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Nakada, Ok., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer dimension impact and edge form dependence. Phys. Rev. B 54, 17954–17961 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Digital transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Han, M. Y., Özyilmaz, B., Zhang, Y. & Kim, P. Vitality band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Stergiou, A., Cantón-Vitoria, R., Psarrou, M. N., Economopoulos, S. P. & Tagmatarchis, N. Functionalized graphene and focused functions – highlighting the highway from chemistry to functions. Prog. Mater Sci. 114, 100683 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Emtsev, Ok. V., Speck, F., Seyller, Th., Ley, L. & Riley, J. D. Interplay, development, and ordering of epitaxial graphene on SiC{0001} surfaces: a comparative photoelectron spectroscopy research. Phys. Rev. B 77, 155303 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Riedl, C., Coletti, C. & Starke, U. Structural and digital properties of epitaxial graphene on SiC(0 0 0 1): a evaluation of development, characterization, switch doping and hydrogen intercalation. J. Phys. D 43, 374009 (2010).

    Article 

    Google Scholar
     

  • de Heer, W. A. et al. Giant space and structured epitaxial graphene produced by confinement managed sublimation of silicon carbide. Proc. Natl Acad. Sci. USA 108, 16900–16905 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Heer, W. A. Graphene transistor. US patent 9,171,907 B2 (2015).

  • Nevius, M. S. et al. Semiconducting graphene from extremely ordered substrate interactions. Phys. Rev. Lett. 115, 136802 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, L., Zhang, C. & Liu, Y. Why two-dimensional semiconductors typically have low electron mobility. Phys. Rev. Lett. 125, 177701 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Emery, J. D. et al. Chemically resolved interface construction of epitaxial graphene on SiC(0001). Phys. Rev. Lett. 111, 215501 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Conrad, M. et al. Construction and evolution of semiconducting buffer graphene grown on SiC(0001). Phys. Rev. B 96, 195304 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Goler, S. et al. Revealing the atomic construction of the buffer layer between SiC(0001) and epitaxial graphene. Carbon 51, 249–254 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Tairov, Y. M. & Tsvetkov, V. F. Progress in controlling the expansion of polytypic crystals. Prog. Cryst. Development Charact. 7, 111–162 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Bao, J., Yasui, O., Norimatsu, W., Matsuda, Ok. & Kusunoki, M. Sequential management of step-bunching throughout graphene development on SiC (0001). Appl. Phys. Lett. 109, 081602 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Honstein, G., Chatillon, C. & Baillet, F. Thermodynamic method to the vaporization and development phenomena of SiC ceramics. I. SiC and SiC–SiO2 mixtures beneath impartial situations. J. Eur. Ceram. Soc. 32, 1117–1135 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Müller, G. & Friedrich J. in Encyclopedia of Condensed Matter Physics (eds Bassani, F. et al.) 262–274 (Elsevier, 2005).

  • Huang, L. et al. Excessive-contrast SEM imaging of supported few-layer graphene for differentiating distinct layers and resolving high quality options: there may be loads of room on the backside. Small 14, 1704190 (2018).

    Article 

    Google Scholar
     

  • Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kunc, J., Hu, Y., Palmer, J., Berger, C. & de Heer, W. A. A technique to extract pure Raman spectrum of epitaxial graphene on SiC. Appl. Phys. Lett. 103, 201911 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Gammelgaard, L. et al. Graphene transport properties upon publicity to PMMA processing and warmth therapies. 2D Mater. 1, 035005 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Donato, N. & Udrea, F. Static and dynamic results of the unfinished ionization in superjunction units. IEEE Trans. Electron Gadgets 65, 4469–4475 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vallejos-Burgos, F., Coudert, F.-X. & Kaneko, Ok. Air separation with graphene mediated by nanowindow-rim concerted movement. Nat. Commun. 9, 1812 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M. et al. Electronically engineered interface molecular superlattices: STM research of fragrant molecules on graphite. Phys. Rev. B 76, 155438 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Sul, O. et al. Discount of gap doping of chemical vapor deposition grown graphene by photoresist choice and thermal therapy. Nanotechnology 27, 505205 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Jariwala, D. et al. Band-like transport in excessive mobility unencapsulated single-layer MoS2 transistors. Appl. Phys. Lett. 102, 173107 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Li, J.-T. et al. Localized tail state distribution and hopping transport in ultrathin zinc-tin-oxide skinny movie transistor. Appl. Phys.Lett. 110, 023504 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Chen, J. H. et al. Charged-impurity scattering in graphene. Nat. Phys. 4, 377–381 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kittel, C. Introduction to Strong State Physics, eighth edn (2004, Wiley).

  • Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • de Heer, W. A. Patterned graphene nanoelectronics. Georgia Tech Library Archive. https://doi.org/10.35090/gatech/69985 (2022).

  • de Heer, W. A. The invention of graphene electronics and the physics of epitaxial graphene on silicon carbide. Phys. Scr. 2012, 014004 (2012).

    Article 

    Google Scholar
     

  • Maboudian, R., Carraro, C., Senesky, D. G. & Roper, C. S. Advances in silicon carbide science and expertise on the micro- and nanoscales. J. Vacuum Sci. Technol. A 31, 050805 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Schlecht, M. T. et al. An environment friendly terahertz rectifier on the graphene/SiC supplies platform. Sci. Rep. 9, 11205 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Epping, A. et al. Insulating state in low-disorder graphene nanoribbons. Phys, Standing Solidi 256, 1900269 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Prudkovskiy, V. S. et al. An epitaxial graphene platform for zero-energy edge state nanoelectronics. Nat. Commun. 13, 7814 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briggs, N. et al. Epitaxial graphene/silicon carbide intercalation: a minireview on graphene modulation and distinctive 2D supplies. Nanoscale 11, 15440–15447 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gigliotti, J. et al. Extremely ordered boron nitride/epigraphene epitaxial movies on silicon carbide by lateral epitaxial deposition. ACS Nano 14, 12962–12971 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ottapilakkal, V. et al. Thermal stability of skinny hexagonal boron nitride grown by MOVPE on epigraphene. J. Cryst. Development 603, 127030 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Speck, F. et al. The quasi-free-standing nature of graphene on H-saturated SiC(0001). Appl. Phys. Lett, 99, 122106 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Palmer, J. et al. Managed epitaxial graphene development inside detachable amorphous carbon corrals. Appl. Phys. Lett, 105, 023106 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A. A. & Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103, 246804 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Check out our other content

    Check out other tags:

    Most Popular Articles