17.4 C
Los Angeles
Saturday, July 27, 2024

Oldest thylakoids in fossil cells straight proof oxygenic photosynthesis

NatureOldest thylakoids in fossil cells straight proof oxygenic photosynthesis


  • Sánchez-Baracaldo, P., Bianchini, G., Wilson, J. D. & Knoll, A. H. Cyanobacteria and biogeochemical cycles by means of Earth historical past. Developments Microbiol. 30, 143–157 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ostrander, C. M., Johnson, A. C. & Anbar, A. D. Earth’s first redox revolution. Annu. Rev. Earth Planet. Sci. 49, 337–366 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wilmeth, D. T. et al. Proof for benthic oxygen manufacturing in Neoarchean lacustrine stromatolites. Geology 50, 907–911 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Slotznick, S. P. et al. Reexamination of two.5-Ga “Whiff” of oxygen interval factors to anoxic ocean earlier than GOE. Sci. Adv. 8, eabj7190 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Demoulin, C. F. et al. Cyanobacteria evolution: perception from the fossil file. Free Rad. Biol. Med. 140, 206–223 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rippka, R., Waterbury, J. & Cohen-Bazire, G. A cyanobacterium which lacks thylakoids. Arch. Microbiol. 100, 419–436 (1974).

    Article 
    CAS 

    Google Scholar
     

  • Komarek, J. & Anagnostidis, Ok. in Freshwater Flora of Central Europe Vol. 19, (ed. Moltmann, U. G.) 34–36 (Spektrum Akademischer, 2008).

  • Cavalier-Smith, T. The neomuran origin of archaebacterial, the negibacterial root of the common tree and bacterial megaclassification. Int. J. Syst. Evol. Microbiol. 52, 7–76 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shih, P. M., Hemp, J., Ward, L. M., Matzke, N. J. & Fischer, W. W. Crown group Oxyphotobacteria postdate the rise of oxygen. Geobiology 15, 19–29 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahmatpour, N. et al. A novel thylakoid-less isolate fills a billion-year hole within the evolution of cyanobacteria. Curr. Biol. 31, 2857–2867 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fournier, G. P. et al. The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages. Proc. R. Soc. Lond. B Biol. Sci. 288, 20210675 (2021).

    CAS 

    Google Scholar
     

  • Hofmann, H. J. Precambrian microflora, Belcher Islands, Canada: significance and systematics. J. Paleontol. 50, 1040–1073 (1976).


    Google Scholar
     

  • Hodgskiss, M. S. et al. New insights on the Orosirian carbon cycle, early Cyanobacteria, and the meeting of Laurentia from the Paleoproterozoic Belcher Group. Earth Planet. Sci. Lett. 520, 141–152 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jabłońska, J. & Tawfik, D. S. The evolution of oxygen-utilizing enzymes suggests early biosphere oxygenation. Nat. Ecol. Evol. 5, 442–448 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cardona, T., Sánchez-Baracaldo, P., Rutherford, A. W. & Larkum, A. W. D. Early Archean origin of Photosystem II. Geobiology 17, 127–150 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sánchez-Baracaldo, P. & Cardona, T. On the origin of oxygenic photosynthesis and cyanobacteria. New Phytol. 225, 1440–1446 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Clean, C. E. & Sánchez-Baracaldo, P. Timing of morphological and ecological improvements within the cyanobacteria a key to grasp the rise in atmospheric oxygen. Geobiology 8, 1–23 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schirrmeister, B. E., Gugger, M. & Donoghue, P. C. Cyanobacteria and the Nice Oxidation Occasion: proof from genes and fossils. Palaeontology 58, 769–785 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shih, P. M. et al. Biochemical characterization of predicted Precambrian RuBisCO. Nat. Commun. 7, 10382 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwartz, R. M. & Dayhoff, M. O. Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts. Science 199, 395–403 (1978).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Golubic, S. & Hofmann, H. J. Comparability of Holocene and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: cell division and degradation. J. Paleontol. 50, 1074–1082 (1976).


    Google Scholar
     

  • Butterfield, N. J. Proterozoic photosynthesis – a vital assessment. Palaeontology 58, 953–972 (2015).

    Article 

    Google Scholar
     

  • Sergeev, V. N. Microfossils in cherts from the center riphean (mesoproterozoic) Avzyan Formation, southern ural Mountains, Russian federation. Precambrian Res. 65, 231–254 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. Proterozoic stromatolitic micro-organisms from Hebei, North China: cell preservation and cell division. Precambrian Res. 38, 165–175 (1988).

  • Javaux, E. J., Knoll, A. H. & Walter, M. R. TEM proof for eukaryotic range in mid-Proterozoic oceans. Geobiology 2, 121–132 (2004).

    Article 

    Google Scholar
     

  • Loron, C. C., Rainbird, R. H., Turner, E. C., Greenman, J. W. & Javaux, E. J. Natural-walled microfossils from the late Mesoproterozoic to early Neoproterozoic decrease Shaler Supergroup (Arctic Canada): range and biostratigraphic significance. Precambrian Res. 321, 349–374 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shimoni, E., Rav-Hon, O., Ohad, I., Brumfeld, V. & Reich, Z. Three-dimensional group of higher-plant chloroplast thylakoid membranes revealed by electron tomography. Plant Cell 17, 2580–2586 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez-Esquer, C. R. et al. Cyanobacterial ultrastructure in mild of genomic sequence information. Photosynth. Res. 129, 147–157 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mareš, J., Strunecký, O., Bučinská, L. & Wiedermannova, J. Evolutionary patterns of thylakoid structure in cyanobacteria. Entrance. Microbiol. 10, 277 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mareš, J. et al. The primitive thylakoid-less cyanobacterium Gloeobacter is a standard rock-dwelling organism. PLoS ONE 8, e66323 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelissen, B., Van de Peer, Y., Wilmotte, A. & De Wachter, R. An early origin of platids throughout the cyanobacterial divergence is usually recommended by evolutionary timber primarily based on full 16S rRNA sequences. Mol. Biol. Evol. 12, 1166–1173 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Raven, J. A. & Sànchez-Baracaldo, P. Gloeobacter and the implications of a freshwater origin of cyanobacteria. Phycologia 60, 402–418 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Guéguen, N. & Maréchal, E. Origin of cyanobacterial thylakoids through a non-vesicvular glycolipid section transition and their impression on the Nice Oxygenation Occasion. J. Exp. Bot. 73, 2721–2734 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Pacton, M., Gorin, G. E. & Fiet, N. Unravelling the origin of ultralaminae in sedimentary natural matter: the contribution of micro organism and photosynthetic organisms. J. Sediment. Res. 78, 654–667 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Kremer, B., Kaźmierczak, J. & Środoń, J. Cyanobacterial-algal crusts from Late Ediacaran paleosols of the East European Craton. Precambrian Res. 305, 236–246 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schoenhut, Ok., Vann, D. R. & LePage, B. A. Cytological and ultrastructural preservation in Eocene Metasequoia leaves from the Canadian Excessive Arctic. Am. J. Bot. 91, 816–824 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, X., Liu, W., Du, Ok., He, X. & Jin, J. Ultrastructural of chloroplasts in fossil Nelumbo from the Eocene of Hainan Island, South China. Plant Syst. Evol. 300, 2259–2264 (2014).

    Article 

    Google Scholar
     

  • Lepot, Ok. et al. Natural and mineral imprints in fossil photosynthetic mats of an East-Antarctic lake. Geobiol. 12, 424–450 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Miao, L., Moczydłowska, M., Zhu, S. & Zhu, M. New file of organic-walled, morphologically distinct microfossils from the late Paleoproterozoic ChangCheng Group within the Yanshan Vary, North China. Precambrian Res. 321, 172–198 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Spinks, S. C., Schmid, S. & Pagès, A. Delayed euxinia in Paleoproterozoic intracontinental seas: important havens for the evolution of eukaryotes. Precambrian Res. 287, 108–114 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • François, C. et al. Multi-method relationship constrains the diversification of early 2 eukaryotes within the Proterozoic Mbuji-Mayi Supergroup of the D.R.Congo and the geological evolution of the Congo Basin. J. Afr. Earth Sci. 198, 104785 (2023).

  • Baludikay, B. Ok., Storme, J. Y., François, C., Baudet, D. & Javaux, E. J. A various and exquisitely preserved organic-walled microfossil assemblage from the Meso–Neoproterozoic Mbuji-Mayi Supergroup (Democratic Republic of Congo) and implications for Proterozoic biostratigraphy. Precambrian Res. 281, 166–18 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pyatiletov, V. G. Yudoma complicated microfossils from southern Yakutia. Geol. Geofiz. 7, 8–20 (1980).


    Google Scholar
     

  • Hofmann, H. J. & Jackson, G. D. Shale-facies microfossils from the Proterozoic Bylot Supergroup, Baffin Island, Canada. J. Paleontol. 68, 1–35 (1994).

    Article 

    Google Scholar
     

  • Kirchhoff, H. Chloroplast ultrastructure in crops. New Phytol. 223, 565–574 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Meng, L. et al. Measuring the dynamic response of the thylakoid structure in plant leaves by electron microscopy. Plant Direct. 4, e00280 (2020).

    Article 

    Google Scholar
     

  • Spinks, S. C., Schmid, S., Pagés, A. & Bluett, J. Proof for SEDEX-style mineralization within the 1.7 Ga Tawallah Group, McArthur basin, Australia. Ore Geol. Rev. 76, 122–139 (2018).

    Article 

    Google Scholar
     

  • Javaux, E. J., Marshall, C. P. & Bekker, A. Natural-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463, 934–938 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fatka, O. & Brocke, R. Morphological variability and technique of opening of the Devonian acritarch Navifusa bacilla. Rev. Palaeobot. Palynol. 148, 108–123 (2008).

    Article 

    Google Scholar
     

  • Horodyski, R. J. & Donaldson, J. A. Microfossils from the center Proterozoic Dismal Lakes Teams, Arctic Canada. Precambrian Res. 11, 125–159 (1980).

    Article 
    ADS 

    Google Scholar
     

  • Golubic, S., Sergeev, V. N. & Knoll, A. H. Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria. Lethaia 28, 285–298 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tomitani, A., Knoll, A. H., Cavanaugh, C. M. & Ohno, T. The evolutionary diversification of cyanobacteria: molecular–phylogenetic and paleontological views. Proc. Natl Acad. Sci. USA 103, 5442–5447 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaplan-Levy, R. N., Hadas, O., Summers, M. L., Rücker, J. & Sukenik, A. in Dormancy and Resistance in Harsh Environments (eds Lubzens, E. et al.) 5–27 (Springer, 2010).

  • Sergeev, V. N., Knoll, A. H., Vorob’eva, N. G. & Sergeeva, N. D. Microfossils from the decrease Mesoproterozoic Kaltasy Formation, East European Platform. Precambrian Res. 278, 87–107 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Sukenik, A., Rücker, J. & Maldener, I. in Cyanobacteria from Fundamental Science to Purposes (eds Mishra, A. Ok. et al.) 65–77 (Tutorial, 2019).

  • Perez, R., Forchhammer, Ok., Salerno, G. & Maldener, I. Clear variations in metabolic and porphological variations of akinetes of two Nostocales residing in several habitats. Microbiology 162, 214–223 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • López-García, P. & Moreira, D. The Syntrophy speculation for the origin of eukaryotes revisited. Nat. Microbiol. 5, 655–667 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Javaux, E. J. in Encyclopedia of Astrobiology (eds Gargaud, M. et al.), Ch. 538–4, 1–5 (Springer, 2021).

  • Baludikay, B. Ok. et al. Raman microspectroscopy, bitumen reflectance and illite crystallinity scale: comparability of various geothermometry strategies on fossiliferous Proterozoic sedimentary basins (DR Congo, Mauritania and Australia). Int. J. Coal Geol. 191, 80–94 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gray, Ok. A modified palynological preparation approach for the extraction of enormous Neoproterozoic acanthomorph acritarchs and different acid-insoluble microfossils. Western Australia Geological Survey, Document 1999/10 (1999).

  • Check out our other content

    Check out other tags:

    Most Popular Articles