Friedl, P. & Weigelin, B. Interstitial leukocyte migration and immune perform. Nat. Immunol. 9, 960–969 (2008).
Rowat, A. C. et al. Nuclear envelope composition determines the flexibility of neutrophil-type cells to passage via micron-scale constrictions. J. Biol. Chem. 288, 8610–8618 (2013).
Kalukula, Y., Stephens, A. D., Lammerding, J. & Gabriele, S. Mechanics and purposeful penalties of nuclear deformations. Nat. Rev. Mol. Cell Biol. 23, 583–602 (2022).
Georgopoulos, Ok. Searching for the mechanism that shapes the neutrophil’s nucleus. Genes Dev. 31, 85–87 (2017).
Nasmyth, Ok. & Haering, C. H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525–558 (2009).
Cavaillon, J. The historic milestones within the understanding of leucocyte biology initiated by Elie Metchnikoff. J. Leuc. Biol. 90, 413–424 (2011).
Metchnikoff, E. Über eine Sprosspilzkrankheit der Daphnien. Beitrag zur Lehre über den Kampf der Phagozyten gegen Krankheitserreger. Arch. Pathol. Anat. Physiol. Klin. Med. 96, 177–195 (1884).
Schultze, M. Ein heizbarer Objecttisch und seine Verwendung bei Untersuchungen des Blutes. Arch. Mikrosc. Anat. 1, 1–42 (1865).
Hoffmann, Ok. et al. Mutations within the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger–Huët anomaly). Nat. Genet. 31, 410–414 (2002).
Shultz, L. D. et al. Mutations on the mouse ichthyosis locus are throughout the lamin B receptor gene: a single gene mannequin for human Pelger–Huët anomaly. Hum. Mol. Gen. 12, 61–69 (2003).
Bolzer, A. et al. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 3, e157 (2005).
Hoencamp, C. et al. 3D genomics throughout the tree of life reveals condensing II as a determinant of structure kind. Science 372, 984–989 (2021).
Keenan, C. R. et al. Chromosomes distribute randomly to, however not inside, human nuclear lobes. iScience 24, 102161 (2021).
Waugh, B. et al. Three-dimensional deconvolution processing for STEM cryotomography. Proc. Natl Acad. Sci. USA 117, 27374–27380 (2020).
Sedat, J. W. et al. A proposed unified interphase nucleus chromosome construction: preliminary preponderance of proof. Proc. Natl Acad. Sci. USA 119, e2119107119 (2022).
Lieberman-Aiden, E. et al. Complete mapping of long-range interactions reveals folding rules of the human genome. Science 326, 289–293 (2009).
Dixon, et al. Topological domains in mammalian genomes recognized by evaluation of chromatin interactions. Nature 485, 376–380 (2012).
Hafner, A. et al. Loop stacking organizes genome folding from TADs to chromosomes. Mol. Cell 83, 1377–1392 (2021).
Yatskevich, S., Rhodes, J. & Nasmyth, Ok. Group of chromosomal DNA by SMC complexes. Annu. Rev. Genet. 53, 445–482 (2019).
Schwartzer, W. et al. Two unbiased modes of chromatin group revealed by cohesin elimination. Nature 551, 51–56 (2017).
Rao, S. S. et al. A 3D map of the human genome at kilobase decision reveals rules of chromatin looping. Cell 159, 1665–1680 (2014).
Haarhuis, J. H. et al. The cohesin launch issue WAPL restricts chromatin loop extension. Cell 169, 693–707 (2017).
Sykes, D. B. & Kamps, M. P. Estrogen-dependent E2A/Pbx1 myeloid cell traces exhibit conditional differentiation that may be arrested by different leukemic oncoproteins. Blood 98, 2308–2318 (2001).
Zhu, Y. et al. Complete characterization of neutrophil genome topology. Genes Dev. 31, 141–153 (2017).
Grieshaber-Bouyer, R. et al. The neutrotime transcriptional signature defines a single continuum of neutrophils throughout organic compartments. Nat. Commun. 12, 2856 (2021).
Zhu, Y., Denholtz, M., Lu, H. & Murre, C. Calcium signaling instructs NIPBL recruitment at energetic enhancers and promoters through distinct mechanisms to reconstruct genome compartmentalization. Genes Dev. 35, 65–81 (2021).
Nabet, B. et al. The dTAG system for fast and target-specific protein degradation. Nat. Chem. Biol. 14, 431–441 (2018).
Khoyratty, T. E. et al. Distinct transcription issue networks management neutrophil-driven irritation. Nat. Immunol. 22, 1093–1106 (2021).
Hu, Y. et al. Tremendous-enhancer reprogramming drives a B cell-epithelial transition and high-risk leukemia. Genes Dev. 30, 1971–1990 (2016).
Heinz, S. et al. Easy mixtures of lineage-determining transcription components prime cis-regulatory parts required for macrophages and B cell identities. Mol. Cell 38, 576–589 (2010).
Martinon, F., Burns, Ok. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).
Thomas, P. G. et al. The intracellular sensor NLRP3 mediates key innate and therapeutic responses to influenza A virus through the regulation of caspase-1. Immunity 30, 566–575 (2009).
Li, M. T. et al. Unfavorable regulation of RIG-I mediated innate antiviral signaling by SEC14L1. J. Virol. 87, 10037-46 (2013).
Braunholz, D. et al. Remoted NIPBL-missense mutations that trigger Cornelia de Lange syndrome alter MAU2 interplay. Eur. J. Hum. Genet. 20, 271–276 (2012).
Chao, W. C. H. et al. Structural research reveal the purposeful modularity of the Scc2-Scc4 cohesin loader. Cell Rep. 12, 719–725 (2015).
Seki, A. & Rutz, S. Optimized RNP transfection for extremely environment friendly CRISPR/Cas9-mediated gene knockout in main T cells. J. Exp. Med. 215, 985–997 (2018).
Hendel, A. et al. Chemically modified information RNAs improve CRISPR–Cas genome modifying in human main cells. Nat. Biotechnol. 33, 985–989 (2015).
Xie, X. et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and an infection. Nat. Immunol. 21, 1119–1133 (2020).
Rao, S. S. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 (2017).
Calderon, L. et al. Cohesin-dependence of neuronal gene expression pertains to chromatin loop size. eLife 11, e76539 (2022).
Cuartero, S. et al. Management of inducible gene expression hyperlinks cohesin to hematopoietic progenitor self-renewal and differentiation. Nat. Immunol. 9, 932–941 (2018).
Kalukula, Y., Stephens, A. D., Lammerding, J. & Gabriele, S. Mechanisms and purposeful penalties of nuclear deformations. Nat. Rev. Mol. Cell Biol. 23, 583–602 (2022).
Mohana, G. et al. Chromosome-level group of the regulatory genome within the Drosophila nervous system. Cell 186, 3826–3844 (2023).
Bashkirova, E. & Lomvardas, S. Olfactory receptor genes make the case for inter-chromosomal interactions. Curr. Opin. Genet. Dev. 55, 106–113 (2019).
Hu, Y. et al. Lineage particular 3D genome group is assembled at a number of scales by Ikaros. Cell 186, 5260–5289 (2023).
Andrews, S. FastQC: a top quality management device for top throughput sequence knowledge. Babraham Bioinformatics http://www.bioinformatics.babraham.ac.uk/initiatives/fastqc (2010).
Dobin, A. et al. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Robinson, M. D. et al. edgeR: a Bioconductor package deal for differential expression evaluation of digital gene expression knowledge. Bioinformatics. 26, 139–40 (2010).
Raudvere, U. et al. gProfiler: an internet server for purposeful enrichment evaluation and conversion of gene lists. Nucleic Acids Res. 47, W191–W198 (2019).
Yu, G., Wang, L. & He, Q. ChIPseeker: an R/Bioconductor package deal for ChIP peak annotation, comparability and visualization. Bioinformatics 31, 2382–2383 (2015).
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
Zhang, et al. Quick alignment and preprocessing of chromatin profiles with Chromap. Nat. Commun. 12, 6566 (2021).
Yang, et al.HiCRep: assessing the reproducibility of HiC knowledge utilizing a stratum-adjusted correlation coefficient. Genome Res. 11, 1939–1949 (2017).
Kuleshov, M. V. et al. Enrichr: a complete gene set enrichment evaluation net served 2016 replace. Nucleic Acids Res. 44, W90–W97 (2016).
Hao, Y. et al. Built-in evaluation of multimodal single-cell knowledge. Cell 184, 3573–3587 (2021).
Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Quick unfolding of communities in massive networks. J. Stat. Mech. Idea Exp. 2008, P10008 (2008).
Lange, M. et al. CellRank for directed single-cell destiny mapping. Nat. Strategies 19, 159–170 (2022).
Gulati, G. S. et al. Single-cell transcriptional variety is a trademark of developmental potential. Science 367, 405–411 (2020).