Minutes-duration optical flares with supernova luminosities

Date:


  • Drout, M. R. et al. Quickly evolving and luminous transients from Pan-STARRS1. Astrophys. J. 794, 23 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kasen, D. in Handbook of Supernovae (eds Alsabti, A. & Murdin, P.) 939–965 (Springer, 2017).

  • Prentice, S. J. et al. The Cow: discovery of a luminous, scorching, and quickly evolving transient. Astrophys. J. Lett. 865, L3 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ho, A. Y. Q. et al. A seek for extragalactic quick blue optical transients in ZTF and the speed of AT2018cow-like transients. Astrophys. J. 949, 120 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Margutti, R. et al. An embedded X-ray supply shines by way of the aspherical AT 2018cow: revealing the inside workings of probably the most luminous fast-evolving optical transients. Astrophys. J. 872, 18 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rivera Sandoval, L. E. et al. X-ray Swift observations of SN 2018cow. Mon. Not. R. Astron. Soc. 480, L146–L150 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Yao, Y. et al. The X-ray and radio loud quick blue optical transient AT2020mrf: implications for an rising class of engine-driven huge star explosions. Astrophys. J. 934, 104 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Y. et al. Late-time HST observations of AT 2018cow II: evolution of a UV-bright underlying supply 2-4 years post-explosion. Astrophys. J. 955, 43 (2023).

  • Pasham, D. R. et al. Proof for a compact object within the aftermath of the extragalactic transient AT2018cow. Nat. Astron. 6, 249–258 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, W. et al. A doable 250 s X-ray quasi-periodicity within the quick blue optical transient AT2018cow. Res. Astron. Astrophys. 22, 125016 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ho, A. Y. Q. et al. The Koala: a quick blue optical transient with luminous radio emission from a starburst dwarf galaxy at z = 0.27. Astrophys. J. 895, 49 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Coppejans, D. L. et al. A mildly relativistic outflow from the energetic, fast-rising blue optical transient CSS161010 in a dwarf galaxy. Astrophys. J. Lett. 895, L23 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Munoz-Arancibia, A. et al. ALeRCE/ZTF Transient Discovery Report for 2022-09-07. Transient Identify Server Discovery Report, No. 2022–2602 (2022).

  • Förster, F. et al. The Computerized Studying for the Speedy Classification of Occasions (ALeRCE) alert dealer. Astron. J. 161, 242 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ho, A. Y. Q. et al. Keck/LRIS observations of AT2022tsd, a fast-rising optical transient coincident with a z=0.256 galaxy. Transient Identify Server AstroNote 2022-199 (2022).

  • Planck Collaboration. Planck 2018 outcomes. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article 

    Google Scholar
     

  • Ho, A. Y. Q. & Perley, D. A. VLA Ku-band detection of AT2022tsd. Transient Identify Server AstroNote 2022-205 (2022).

  • Schulze, S., Ho, A. Y. Q., Perley, D. A., Yan, L. & Fremling, C. Swift X-ray detection of AT2022tsd. Transient Identify Server AstroNote 2022-207 (2022).

  • Metzger, B. D. Luminous quick blue optical transients and kind Ibn/Icn SNe from Wolf-Rayet/Black Gap mergers. Astrophys. J. 932, 84 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ho, A. Y. Q. et al. Discovery of minute-timescale optical flares with supernova-like luminosities on the place of the luminous quick blue optical transient AT2022tsd (the “Tasmanian Satan”). Transient Identify Server AstroNote 2022-267 (2022).

  • Matthews, D. et al. Chandra-NuSTAR detection of X-ray emission on the location of FBOT AT2022tsd. Transient Identify Server AstroNote 2022-218 (2022).

  • Perley, D. A. et al. The quick, luminous ultraviolet transient AT2018cow: excessive supernova, or disruption of a star by an intermediate-mass black gap?. Mon. Not. R. Astron. Soc. 484, 1031–1049 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Quataert, E., Lecoanet, D. & Coughlin, E. R. Black gap accretion discs and luminous transients in failed supernovae from non-rotating supergiants. Mon. Not. R. Astron. Soc. Lett. 485, L83–L88 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kuin, N. P. M. et al. Swift spectra of AT2018cow: a white dwarf tidal disruption occasion?. Mon. Not. R. Astron. Soc. 487, 2505–2521 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Beck, R. et al. PS1-STRM: neural community supply classification and photometric redshift catalogue for PS1 3π DR1. Mon. Not. R. Astron. Soc. 500, 1633–1644 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Oke, J. B. & Gunn, J. E. Secondary commonplace stars for absolute spectrophotometry. Astrophys. J. 266, 713–717 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Finkbeiner, D. P., Davis, M. & Schlegel, D. J. Extrapolation of galactic mud emission at 100 microns to cosmic microwave background radiation frequencies utilizing FIRAS. Astrophys. J. 524, 867 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of mud infrared emission to be used in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article 
    ADS 

    Google Scholar
     

  • van der Walt, S. J., Crellin-Fast, A. & Bloom, J. S. SkyPortal: an astronomical information platform. J. Open Supply Softw. 4, 1247 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Coughlin, M. W. et al. A knowledge science platform to allow time-domain astronomy. Astrophys. J. Suppl. Ser. 267, 31 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Perley, D. A. et al. Actual-time discovery of AT2020xnd: a quick, luminous ultraviolet transient with minimal radioactive ejecta. Mon. Not. R. Astron. Soc. 508, 5138–5147 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jiang, J. A. et al. MUSSES2020J: the earliest discovery of a quick blue ultraluminous transient at redshift 1.063. Astrophys. J. Lett. 933, L36 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Pursiainen, M. et al. Quickly evolving transients within the Darkish Vitality Survey. Mon. Not. R. Astron. Soc. 481, 894–917 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arcavi, I. et al. Quickly rising transients within the supernova—superluminous supernova hole. Astrophys. J. 819, 35 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Gal-Yam, A. in Handbook of Supernovae (eds Alsabti, A. & Murdin, P.) 1–43 (Springer, 2016).

  • Ho, A. Y. Q. et al. AT2018cow: a luminous millimeter transient. Astrophys. J. 871, 73 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ho, A. Y. Q. et al. Luminous millimeter, radio, and X-ray emission from ZTF 20acigmel (AT 2020xnd). Astrophys. J. 932, 116 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Shiny, J. S. et al. Radio and X-ray observations of the luminous quick blue optical transient AT 2020xnd. Astrophys. J. 926, 112 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Phinney, E. S. in Symposium – Worldwide Astronomical Union, Quantity 136: The Galactic Middle 543–553 (Kluwer, 1989).

  • Levan, A. J. et al. A particularly luminous panchromatic outburst from the nucleus of a distant galaxy. Science 333, 199–202 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Burrows, D. N. et al. Relativistic jet exercise from the tidal disruption of a star by an enormous black gap. Nature 476, 421–424 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cenko, S. B. et al. Swift J2058.4+0516: discovery of a doable second relativistic tidal disruption flare? Astrophys. J. 753, 77 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Matthews, D. et al. Unprecedented X-ray emission from the quick blue optical transient AT2022tsd. Res. Not. AAS 7, 126 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Rybicki, G. B. & Lightman, A. P. Radiative Processes in Astrophysics (Wiley, 1986).

  • Nayana, A. J. & Chandra, P. uGMRT observations of a quick and blue optical transient—AT 2018cow. Astrophys. J. Lett. 912, L9 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Fender, R. P. et al. Spectral proof for a strong compact jet from XTE J1118+480. Mon. Not. R. Astron. Soc. 322, L23–L27 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Tetarenko, A. J. et al. Measuring basic jet properties with multiwavelength quick timing of the black gap X-ray binary MAXI J1820+070. Mon. Not. R. Astron. Soc. 504, 3862–3883 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fender, R. P. et al. Complete protection of particle acceleration and kinetic suggestions from the stellar mass black gap V404 Cygni. Mon. Not. R. Astron. Soc. 518, 1243–1259 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Falcke, H. et al. The simultaneous spectrum of Sagittarius A* from 20 centimeters to 1 millimeter and the character of the millimeter extra. Astrophys. J. 499, 731 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Chevalier, R. A. Synchrotron self-absorption in radio supernovae. Astrophys. J. 499, 810 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Blandford, R. D. & Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 232, 34–48 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fulton, M. et al. Pan-STARRS observations of AT2022tsd. Transient Identify Server AstroNote 2022-206 (2022).

  • Chomiuk, L., Metzger, B. D. & Shen, Okay. J. New insights into classical novae. Annu. Rev. Astron. Astrophys. 59, 391–444 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Fremling, C. et al. The Zwicky Transient Facility Shiny Transient Survey. I. Spectroscopic classification and the redshift completeness of native galaxy catalogs. Astrophys. J. 895, 32 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perley, D. A. et al. The Zwicky Transient Facility Shiny Transient Survey. II. A public statistical pattern for exploring supernova demographics. Astrophys. J. 904, 35 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Szkody, P. et al. Cataclysmic variables within the second 12 months of the Zwicky Transient Facility. Astron. J. 162, 94 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Polzin, A. et al. The luminosity section house of galactic and extragalactic X-ray transients out to intermediate redshifts. Preprint at https://arxiv.org/abs/2211.01232 (2023).

  • Coppejans, D. L. & Knigge, C. The case for jets in cataclysmic variables. New Astron. Rev. 89, 101540 (2020).

    Article 

    Google Scholar
     

  • Morales-Rueda, L. & Marsh, T. R. Spectral atlas of dwarf novae in outburst. Mon. Not. R. Astron. Soc. 332, 814–826 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Han, Z. et al. Spectroscopic properties of the dwarf nova-type cataclysmic variables noticed by LAMOST. Publ. Astron. Soc. Jpn. 72, 76 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Fertig, D., Mukai, Okay., Nelson, T. & Cannizzo, J. Okay. The autumn and the rise of X-rays from dwarf novae in outburst: RXTE observations of VW Hydri and WW Ceti. Publ. Astron. Soc. Pac. 123, 1054 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Bruch, A. A comparative examine of the power of flickering in cataclysmic variables. Mon. Not. R. Astron. Soc. 503, 953–971 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ilbert, O. et al. in Panoramic Views of Galaxy Formation and Evolution ASP Convention Sequence Vol. 399 169 (Astronomical Society of the Pacific, 2008).

  • Lomb, N. R. Least-squares frequency evaluation of unequally spaced information. Astrophys. House Sci. 39, 447–462 (1976).

    Article 
    ADS 

    Google Scholar
     

  • Scargle, J. D. Research in astronomical time collection evaluation. II. Statistical features of spectral evaluation of erratically spaced information. Astrophys. J. 263, 835–853 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Tsvetkova, A. et al. The Konus–Wind Catalog of Gamma-Ray Bursts with Recognized Redshifts. II. Ready-mode bursts concurrently detected by Swift/BAT. Astrophys. J. 908, 83 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Cano, Z., Wang, S.-Q., Dai, Z.-G. & Wu, X.-F. The Observer’s Information to the Gamma-Ray Burst Supernova Connection. Adv. Astron. 2017, 8929054 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ho, A. Y. Q. et al. Gemini, Swift, and VLA observations of AT2022abfc, a radio-loud quick optical transient coincident with a z=0.212 galaxy. Transient Identify Server AstroNote 2022-275 (2022).

  • Readhead, A. C. S. Equipartition brightness temperature and the inverse Compton disaster. Astrophys. J. 426, 51–59 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Longair, M. S. Excessive Vitality Astrophysics (Cambridge Univ. Press, 2011).

  • Moffet, A. T. in Galaxies and the Universe (eds Sandage, A., Sandage, M. & Kristian, J.) (Univ. Chicago Press, 1975).

  • Chen, Y. et al. Late-time HST observations of AT 2018cow I: additional constraints on the fading immediate emission and thermal properties 50-60 days post-explosion. Astrophys. J. 955, 42 (2023).

  • Gottlieb, O., Tchekhovskoy, A. & Margutti, R. Shocked jets in CCSNe can energy the zoo of quick blue optical transients. Mon. Not. R. Astron. Soc. 513, 3810–3817 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Margalit, B. & Quataert, E. Thermal electrons in mildly relativistic synchrotron blast waves. Astrophys. J. Lett. 923, L14 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wright, A. H. et al. Galaxy and mass meeting: correct panchromatic photometry from optical priors utilizing LAMBDAR. Mon. Not. R. Astron. Soc. 460, 765–801 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chambers, Okay. C. et al. The Pan-STARRS1 surveys. Preprint at https://arxiv.org/abs/1612.05560 (2019).

  • Johnson, B. D., Leja, J., Conroy, C. & Speagle, J. S. Stellar inhabitants inference with Prospector. Astrophys. J. Suppl. Ser. 254, 22 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar inhabitants synthesis modeling. I. The relevance of unsure features of stellar evolution and the preliminary mass perform to the derived bodily properties of galaxies. Astrophys. J. 699, 486 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W. & Morton, T. D. Exoplanet inhabitants inference and the abundance of Earth analogs from noisy, incomplete catalogs. Astrophys. J. 795, 64 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Byler, N., Dalcanton, J. J., Conroy, C. & Johnson, B. D. Nebular continuum and line emission in stellar inhabitants synthesis fashions. Astrophys. J. 840, 44 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Speagle, J. S. DYNESTY: a dynamic nested sampling package deal for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Sánchez-Blázquez, P. et al. Medium-resolution Isaac Newton Telescope library of empirical spectra. Mon. Not. R. Astron. Soc. 371, 703–718 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Schulze, S. et al. The Palomar Transient Manufacturing unit core-collapse supernova host-galaxy pattern. I. Host-galaxy distribution features and setting dependence of core-collapse supernovae. Astrophys. J. Suppl. Ser. 255, 29 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chabrier, G. Galactic stellar and substellar preliminary mass perform. Publ. Astron. Soc. Pac. 115, 763 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Calzetti, D. et al. The mud content material and opacity of actively star-forming galaxies. Astrophys. J. 533, 682 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Quataert, E. & Kasen, D. Swift 1644+57: the longest gamma-ray burst? Mon. Not. R. Astron. Soc. 419, L1–L5 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Woosley, S. E. Gamma-ray bursts from stellar mass accretion disks round black holes. Astrophys. J. 405, 273–277 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Woosley, S. E. & Heger, A. Lengthy gamma-ray transients from collapsars. Astrophys. J. 752, 32 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Kashiyama, Okay. & Quataert, E. Quick luminous blue transients from new child black holes. Mon. Not. R. Astron. Soc. 451, 2656–2662 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kumar, P. & Zhang, B. The physics of gamma-ray bursts & relativistic jets. Phys. Rep. 561, 1–109 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Lyman, J. D. et al. Finding out the setting of AT 2018cow with MUSE. Mon. Not. R. Astron. Soc. 495, 992–999 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Maund, J. R. et al. A flash of polarized optical gentle factors to an aspherical ‘cow’. Mon. Not. R. Astron. Soc. 521, 3323–3332 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Racusin, J. L. et al. Broadband observations of the naked-eye γ-ray burst GRB 080319B. Nature 455, 183–188 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kann, D. A. et al. The afterglows of Swift-era gamma-ray bursts. I. Evaluating pre-Swift and Swift-era lengthy/tender (sort II) GRB optical afterglows. Astrophys. J. 720, 1513 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nesci, R. et al. Multiwavelength flare observations of the blazar S5 1803+784. Mon. Not. R. Astron. Soc. 502, 6177–6187 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kasliwal, M. M. et al. Illuminating gravitational waves: a concordant image of photons from a neutron star merger. Science 358, 1559–1565 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Villar, V. A., Berger, E., Metzger, B. D. & Guillochon, J. Theoretical fashions of optical transients. I. A broad exploration of the length–luminosity section house. Astrophys. J. 849, 70 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Cowperthwaite, P. S. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared gentle curves and comparability to kilonova fashions. Astrophys. J. Lett. 848, L17 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Drout, M. R. et al. Gentle curves of the neutron star merger GW170817/SSS17a: implications for r-process nucleosynthesis. Science 358, 1570–1574 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Andreoni, I. et al. A really luminous jet from the disruption of a star by an enormous black gap. Nature 612, 430–434 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Galama, T. J. et al. An uncommon supernova within the error field of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Campana, S. et al. The affiliation of GRB 060218 with a supernova and the evolution of the shock wave. Nature 442, 1008–1010 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • D’Elia, V. et al. GRB 171205A/SN 2017iuk: an area low-luminosity gamma-ray burst. Astron. Astrophys. 619, A66 (2018).

    Article 

    Google Scholar
     

  • Ho, A. Y. Q. et al. SN 2020bvc: a broad-line sort Ic supernova with a double-peaked optical gentle curve and a luminous X-ray and radio counterpart. Astrophys. J. 902, 86 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zauderer, B. A. et al. Start of a relativistic outflow within the uncommon γ-ray transient Swift J164449.3+573451. Nature 476, 425–428 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, Q., Wang, Q. D., Lei, W.-H., Gao, H. & Zhang, B. Catching jetted tidal disruption occasions early in millimetre. Mon. Not. R. Astron. Soc. 461, 3375–3384 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sheth, Okay. et al. Millimeter observations of GRB 030329: continued proof for a two-component jet. Astrophys. J. Lett. 595, L33 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Perley, D. A. et al. The afterglow of GRB 130427A from 1 to 1016 GHz. Astrophys. J. 781, 37 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Laskar, T. et al. First ALMA gentle curve constrains refreshed reverse shocks and jet magnetization in GRB 161219B. Astrophys. J. 862, 94 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Laskar, T. et al. A reverse shock in GRB 181201A. Astrophys. J. 884, 121 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kulkarni, S. R. et al. Radio emission from the bizarre supernova 1998bw and its affiliation with the γ-ray burst of 25 April 1998. Nature 395, 663–669 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perley, D. A., Schulze, S. & de Ugarte Postigo, A. GRB 171205A: ALMA observations. GRB Coordinates Community, Round Service, No. 22252, #1 (2017).

  • Weiler, Okay. W. et al. Lengthy-term radio monitoring of SN 1993J. Astrophys. J. 671, 1959 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Soderberg, A. M. et al. A relativistic sort Ibc supernova and not using a detected γ-ray burst. Nature 463, 513–515 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Horesh, A. et al. An early and complete millimetre and centimetre wave and X-ray examine of SN 2011dh: a non-equipartition blast wave increasing into an enormous stellar wind. Mon. Not. R. Astron. Soc. 436, 1258–1267 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Corsi, A. et al. A multi-wavelength investigation of the radio-loud supernova PTF11qcj and its circumstellar setting. Astrophys. J. 782, 42 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Maeda, Okay. et al. The ultimate months of huge star evolution from the circumstellar setting round SN Ic 2020oi. Astrophys. J. 918, 34 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mangano, V., Burrows, D. N., Sbarufatti, B. & Cannizzo, J. Okay. The definitive X-ray gentle curve of Swift J164449.3+573451. Astrophys. J. 817, 103 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kouveliotou, C. et al. Chandra observations of the X-ray environs of SN 1998bw/GRB 980425. Astrophys. J. 608, 872 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Tiengo, A., Mereghetti, S., Ghisellini, G., Tavecchio, F. & Ghirlanda, G. Late evolution of the X-ray afterglow of GRB 030329. Astron. Astrophys. 423, 861–865 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Soderberg, A. M., Chevalier, R. A., Kulkarni, S. R. & Frail, D. A. The radio and X-ray luminous SN 2003bg and the circumstellar density variations round radio supernovae. Astrophys. J. 651, 1005 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Margutti, R. et al. The signature of the central engine within the weakest relativistic explosions: GRB 100316D. Astrophys. J. 778, 18 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Dwarkadas, V. V. & Gruszko, J. What are revealed X-ray gentle curves telling us about younger supernova enlargement?. Mon. Not. R. Astron. Soc. 419, 1515–1524 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Mucciarelli, P., Zampieri, L., Treves, A., Turolla, R. & Falomo, R. X-ray and optical variability of the ultraluminous X-ray supply NGC 1313 X-2. Astrophys. J. 658, 999 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kasliwal, M. M. et al. GRB 070610: a curious galactic transient. Astrophys. J. 678, 1127 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stefanescu, A. et al. Very quick optical flaring from a doable new Galactic magnetar. Nature 455, 503–505 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Castro-Tirado, A. J. et al. Flares from a candidate Galactic magnetar counsel a lacking hyperlink to dim remoted neutron stars. Nature 455, 506–509 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Svinkin, D. et al. A brilliant γ-ray flare interpreted as an enormous magnetar flare in NGC 253. Nature 589, 211–213 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Frederiks, D. et al. Large flare in SGR 1806-20 and its Compton reflection from the Moon. Astron. Lett. 33, 1–18 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hankins, T. H., Kern, J. S., Weatherall, J. C. & Eilek, J. A. Nanosecond radio bursts from sturdy plasma turbulence within the Crab pulsar. Nature 422, 141–143 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fender, R. P., Pooley, G. G., Brocksopp, C. & Newell, S. J. Speedy infrared flares in GRS 1915+105: proof for infrared synchrotron emission. Mon. Not. R. Astron. Soc. 290, L65–L69 (1997).

    Article 
    ADS 

    Google Scholar
     

  • van Velzen, S. et al. Seventeen tidal disruption occasions from the primary half of ZTF survey observations: getting into a brand new period of inhabitants research. Astrophys. J. 908, 4 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Payne, A. V. et al. Chandra, HST/STIS, NICER, Swift, and TESS element the flare evolution of the repeating nuclear transient ASASSN-14ko. Astrophys. J. 951, 134 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Marrone, D. P. et al. An X-ray, infrared, and submillimeter flare of Sagittarius A*. Astrophys. J. 682, 373 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Abramowski, A. et al. The 2010 very excessive power γ-ray flare and 10 years of multi-wavelength observations of M 87. Astrophys. J. 746, 151 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Miniutti, G. et al. Repeating tidal disruptions in GSN 069: long-term evolution and constraints on quasi-periodic eruptions’ fashions. Astron. Astrophys. 670, A93 (2023).

    Article 

    Google Scholar
     

  • van Dyk, S. D., Weiler, Okay. W., Sramek, R. A. & Panagia, N. SN 1988Z: probably the most distant radio supernova. Astrophys. J. Lett. 419, L69 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Weiler, Okay. W., Sramek, R. A., Panagia, N., van der Hulst, J. M. & Salvati, M. Radio supernovae. Astrophys. J. 301, 790–812 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Soderberg, A. M. et al. The radio and X-ray-luminous sort Ibc supernova 2003L. Astrophys. J. 621, 908 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Salas, P., Bauer, F. E., Stockdale, C. & Prieto, J. L. SN 2007bg: the complicated circumstellar medium round some of the radio-luminous broad-lined Kind Ic supernovae. Mon. Not. R. Astron. Soc. 428, 1207–1217 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Alexander, Okay. D., Berger, E., Guillochon, J., Zauderer, B. A. & Williams, P. Okay. G. Discovery of an outflow from radio observations of the tidal disruption occasion ASASSN-14li. Astrophys. J. Lett. 819, L25 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Laskar, T., Coppejans, D. L., Margutti, R. & Alexander, Okay. D. GRB 171205A: VLA detection. GRB Coordinates Community, Round Service, No. 22216, #1 (2017).

  • Dong, D. Z. et al. A transient radio supply in step with a merger-triggered core collapse supernova. Science 373, 1125–1129 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mooley, Okay. P. et al. Late-time evolution and modeling of the off-axis gamma-ray burst candidate FIRST J141918.9+394036. Astrophys. J. 924, 16 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Graham, M. J. et al. The Zwicky Transient Facility: Science Targets. Publ. Astron. Soc. Pac. 131, 078001 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Bellm, E. C. et al. The Zwicky Transient Facility: system overview, efficiency, and first outcomes. Publ. Astron. Soc. Pac. 131, 018002 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Dekany, R. et al. The Zwicky Transient Facility: observing system. Publ. Astron. Soc. Pac. 132, 038001 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zackay, B., Ofek, E. O. & Gal-Yam, A. Correct picture subtraction—optimum transient detection, photometry, and speculation testing. Astrophys. J. 830, 27 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Masci, F. J. et al. The Zwicky Transient Facility: information processing, merchandise, and archive. Publ. Astron. Soc. Pac. 131, 018003 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Patterson, M. T. et al. The Zwicky Transient Facility alert distribution system. Publ. Astron. Soc. Pac. 131, 018001 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Duev, D. A. et al. Actual-bogus classification for the Zwicky Transient Facility utilizing deep studying. Mon. Not. R. Astron. Soc. 489, 3582–3590 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Tachibana, Y. & Miller, A. A. A morphological classification mannequin to determine unresolved PanSTARRS1 sources: utility within the ZTF real-time pipeline. Publ. Astron. Soc. Pac. 130, 128001 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Tonry, J. L. et al. The Pan-STARRS1 photometric system. Astrophys. J. 750, 99 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Flewelling, H. A. et al. The Pan-STARRS1 database and information merchandise. Astrophys. J. Suppl. Ser. 251, 7 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Tonry, J. L. et al. ATLAS: a high-cadence all-sky survey system. Publ. Astron. Soc. Pac. 130, 064505 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Smith, Okay. W. et al. Design and operation of the ATLAS transient science server. Publ. Astron. Soc. Pac. 132, 085002 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Shingles, L. et al. Launch of the ATLAS Pressured Photometry server for public use. Transient Identify Server AstroNote 2021-7 (2021).

  • Steele, I. A. et al. The Liverpool Telescope: efficiency and first outcomes. Proc. SPIE 5489, 679 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Dhillon, V. S. et al. ULTRASPEC: a high-speed imaging photometer on the two.4-m Thai Nationwide Telescope. Mon. Not. R. Astron. Soc. 444, 4009–4021 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kumar, H. et al. India’s first robotic eye for time-domain astrophysics: the GROWTH-India telescope. Astron. J. 164, 90 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Dressler, A. et al. IMACS: the Inamori-Magellan Areal Digital camera and Spectrograph on Magellan-Baade. Publ. Astron. Soc. Pac. 123, 288 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Harding, L. Okay. et al. CHIMERA: a wide-field, multi-colour, high-speed photometer on the prime focus of the Hale telescope. Mon. Not. R. Astron. Soc. 457, 3036–3049 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Dhillon, V. S. et al. ULTRACAM: an ultrafast, triple-beam CCD digicam for high-speed astrophysics. Mon. Not. R. Astron. Soc. 378, 825–840 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Smartt, S. J. et al. PESSTO: survey description and merchandise from the primary information launch by the Public ESO Spectroscopic Survey of Transient Objects. Astron. Astrophys. 579, A40 (2015).

    Article 

    Google Scholar
     

  • Buzzoni, B. et al. The ESO Faint Object Spectrograph and Digital camera (EFOSC). ESO Messenger 38, 9–13 (1984).

    ADS 

    Google Scholar
     

  • Blagorodnova, N. et al. The SED Machine: a robotic spectrograph for quick transient classification. Publ. Astron. Soc. Pac. 130, 035003 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ofek, E. O. et al. The Giant Array Survey Telescope—system overview and performances. Publ. Astron. Soc. Pac. 135, 065001 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ben-Ami, S. et al. The Giant Array Survey Telescope—science targets. Publ. Astron. Soc. Pac. 135, 085002 (2023).

  • Ofek, E. O. MAAT: MATLAB Astronomy and Astrophysics Toolbox. Astrophysics Supply Code Library, file ascl:1407.005 (2014).

  • Ofek, E. O. A code for sturdy astrometric resolution of astronomical photographs. Publ. Astron. Soc. Pac. 131, 054504 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Gaia Collaboration. Gaia Early Knowledge Launch 3. Abstract of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).

    Article 

    Google Scholar
     

  • Oke, J. B. et al. The Keck low-resolution imaging spectrometer. Publ. Astron. Soc. Pac. 107, 375 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Perley, D. A. Absolutely automated discount of longslit spectroscopy with the Low Decision Imaging Spectrometer on the Keck Observatory. Publ. Astron. Soc. Pac. 131, 084503 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Nayana, A. J. et al. 325 and 610 MHz radio counterparts of SNR G353.6-0.7 also referred to as HESS J1731-347. Mon. Not. R. Astron. Soc. 467, 155–163 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Greisen, E. W. in Info Dealing with in Astronomy – Historic Vistas (ed. Heck, A.) 109–125 (Springer, 2003).

  • Perley, R. A., Chandler, C. J., Butler, B. J. & Wrobel, J. M. The Expanded Very Giant Array: a brand new telescope for brand spanking new science. Astrophys. J. Lett. 739, L1 (2011).

    Article 
    ADS 

    Google Scholar
     

  • McMullin, J. P., Waters, B., Schiebel, D., Younger, W. & Golap, Okay. in Astronomical Knowledge Evaluation Software program and Methods XVI ASP Convention Sequence Vol. 376 127 (Astronomical Society of the Pacific, 2007).

  • Gildas Workforce. GILDAS: Grenoble Picture and Line Knowledge Evaluation Software program. Astrophysics Supply Code Library, file ascl:1305.010 (2013).

  • Burrows, D. N. et al. The Swift X-ray telescope. House Sci. Rev. 120, 165–195 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Roming, P. W. A. et al. The Swift ultra-violet/optical telescope. House Sci. Rev. 120, 95–142 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Evans, P. A. et al. A web based repository of Swift/XRT gentle curves of γ-ray bursts. Astron. Astrophys. 469, 379–385 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Evans, P. A. et al. Strategies and outcomes of an automated evaluation of an entire pattern of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Willingale, R., Starling, R. L. C., Beardmore, A. P., Tanvir, N. R. & O’Brien, P. T. Calibration of X-ray absorption in our Galaxy. Mon. Not. R. Astron. Soc. 431, 394–404 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Fruscione, A. et al. CIAO: Chandra’s information evaluation system. Proc. SPIE 6270, 62701V (2006).

    Article 

    Google Scholar
     

  • GROWTH India Telescope; https://websites.google.com/view/growthindia/.

  • Taggart, Okay. & Perley, D. A. Core-collapse, superluminous, and gamma-ray burst supernova host galaxy populations at low redshift: the significance of dwarf and starbursting galaxies. Mon. Not. R. Astron. Soc. 503, 3931–3952 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Share post:

    Subscribe

    spot_imgspot_img

    Popular

    More like this
    Related

    Cariuma Dropped These Sneakers in a New Print

    Your journey packing checklist isn't full with...

    Information to Driving the Pan-American Freeway

    Highway journeys are an effective way to...

    What’s Karma Yoga and Tips on how to Apply It? [According Bhagavad Gita]

    If you consider yoga, you could at all...