GPCR activation and GRK2 meeting by a biased intracellular agonist

Date:


  • Pitcher, J. A., Freedman, N. J. & Lefkowitz, R. J. G protein-coupled receptor kinases. Annu. Rev. Biochem. 67, 653–692 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurevich, E. V., Tesmer, J. J., Mushegian, A. & Gurevich, V. V. G protein-coupled receptor kinases: extra than simply kinases and never just for GPCRs. Pharmacol. Ther. 133, 40–69 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurevich, V. V. & Gurevich, E. V. GPCR signaling regulation: the position of GRKs and arrestins. Entrance. Pharmacol. 10, 125 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hodavance, S. Y., Gareri, C., Torok, R. D. & Rockman, H. A. G protein-coupled receptor biased agonism. J. Cardiovasc. Pharmacol. 67, 193–202 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rankovic, Z., Brust, T. F. & Bohn, L. M. Biased agonism: an rising paradigm in GPCR drug discovery. Bioorg. Med. Chem. Lett. 26, 241–250 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seyedabadi, M., Gharghabi, M., Gurevich, E. V. & Gurevich, V. V. Structural foundation of GPCR coupling to distinct sign transducers: implications for biased signaling. Developments Biochem. Sci. 47, 570–581 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slosky, L. M. et al. β-Arrestin-biased allosteric modulator of NTSR1 selectively attenuates addictive behaviors. Cell 181, 1364–1379.e1314 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benovic, J. L., DeBlasi, A., Stone, W. C., Caron, M. G. & Lefkowitz, R. J. β-Adrenergic receptor kinase: major construction delineates a multigene household. Science 246, 235–240 (1989).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mushegian, A., Gurevich, V. V. & Gurevich, E. V. The origin and evolution of G protein-coupled receptor kinases. PLoS ONE 7, e33806 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sulon, S. M. & Benovic, J. L. Focusing on G protein-coupled receptor kinases (GRKs) to G protein-coupled receptors. Curr. Opin. Endocr. Metab. Res. 16, 56–65 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ribas, C. et al. The G protein-coupled receptor kinase (GRK) interactome: position of GRKs in GPCR regulation and signaling. Biochim. Biophys. Acta 1768, 913–922 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Komolov, Okay. E. et al. Construction of a GRK5–calmodulin complicated reveals molecular mechanism of GRK activation and substrate concentrating on. Mol. Cell 81, 323–339 e311 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Q. et al. Constructions of rhodopsin in complicated with G-protein-coupled receptor kinase 1. Nature 595, 600–605 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beautrait, A. et al. Mapping the putative G protein-coupled receptor (GPCR) docking website on GPCR kinase 2: insights from intact cell phosphorylation and recruitment assays. J. Biol. Chem. 289, 25262–25275 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baameur, F. et al. Function for the regulator of G-protein signaling homology area of G protein-coupled receptor kinases 5 and 6 in beta 2-adrenergic receptor and rhodopsin phosphorylation. Mol. Pharmacol. 77, 405–415 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Komolov, Okay. E. et al. Structural and useful evaluation of a β2-adrenergic receptor complicated with GRK5. Cell 169, 407–421.e416 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lodowski, D. T., Pitcher, J. A., Capel, W. D., Lefkowitz, R. J. & Tesmer, J. J. Maintaining G proteins at bay: a fancy between G protein-coupled receptor kinase 2 and Gβγ. Science 300, 1256–1262 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tesmer, V. M., Kawano, T., Shankaranarayanan, A., Kozasa, T. & Tesmer, J. J. Snapshot of activated G proteins on the membrane: the Gαq–GRK2–Gβγ complicated. Science 310, 1686–1690 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • He, Y. et al. Molecular meeting of rhodopsin with G protein-coupled receptor kinases. Cell Res. 27, 728–747 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasmussen, S. G. et al. Crystal construction of the β2 adrenergic receptor–Gs protein complicated. Nature 477, 549–555 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, Y. et al. Crystal construction of rhodopsin certain to arrestin by femtosecond X-ray laser. Nature 523, 561–567 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, X. E. et al. Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170, 457–469.e413 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, W. et al. A posh construction of arrestin-2 certain to a G protein-coupled receptor. Cell Res. 29, 971–983 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, W. et al. Construction of the neurotensin receptor 1 in complicated with β-arrestin 1. Nature 579, 303–308 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Staus, D. P. et al. Construction of the M2 muscarinic receptor–β-arrestin complicated in a lipid nanodisc. Nature 579, 297–302 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, Y. et al. Molecular foundation of β-arrestin coupling to formoterol-bound β1-adrenoceptor. Nature 583, 862–866 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Besserer-Offroy, E. et al. The signaling signature of the neurotensin kind 1 receptor with endogenous ligands. Eur. J. Pharmacol. 805, 1–13 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rostene, W. H. & Alexander, M. J. Neurotensin and neuroendocrine regulation. Entrance. Neuroendocrinol. 18, 115–173 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inagaki, S. et al. G protein-coupled receptor kinase 2 (GRK2) and 5 (GRK5) exhibit selective phosphorylation of the neurotensin receptor in vitro. Biochemistry 54, 4320–4329 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kato, H. E. et al. Conformational transitions of a neurotensin receptor 1–Gi1 complicated. Nature 572, 80–85 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnea, G. et al. The genetic design of signaling cascades to file receptor activation. Proc. Natl Acad. Sci. USA 105, 64–69 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dixon, A. S. et al. NanoLuc complementation reporter optimized for correct measurement of protein interactions in cells. ACS Chem. Biol. 11, 400–408 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, J. et al. Cryo-EM construction of an activated VIP1 receptor–G protein complicated revealed by a NanoBiT tethering technique. Nat. Commun. 11, 4121 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cato, M. C. et al. The open query of how GPCRs work together with GPCR kinases (GRKs). Biomolecules 11, 447 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Homan, Okay. T. & Tesmer, J. J. Molecular foundation for small molecule inhibition of G protein-coupled receptor kinases. ACS Chem. Biol. 10, 246–256 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pellegrini, E., Signor, L., Singh, S., Boeri Erba, E. & Cusack, S. Constructions of the inactive and lively states of RIP2 kinase inform on the mechanism of activation. PLoS ONE 12, e0177161 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Underwood, Okay. W. et al. Catalytically lively MAP KAP kinase 2 buildings in complicated with staurosporine and ADP reveal variations with the autoinhibited enzyme. Construction 11, 627–636 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • White, J. F. et al. Construction of the agonist-bound neurotensin receptor. Nature 490, 508–513 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Komolov, Okay. E., Bhardwaj, A. & Benovic, J. L. Atomic construction of GRK5 reveals distinct structural options novel for G protein-coupled receptor kinases. J. Biol. Chem. 290, 20629–20647 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pitcher, J. A. et al. Function of βγ subunits of G proteins in concentrating on the β-adrenergic receptor kinase to membrane-bound receptors. Science 257, 1264–1267 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Smrcka, A. V. G protein βγ subunits: central mediators of G protein-coupled receptor signaling. Cell. Mol. Life Sci. 65, 2191–2214 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Draper-Joyce, C. J. et al. Optimistic allosteric mechanisms of adenosine A1 receptor-mediated analgesia. Nature 597, 571–576 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egyed, A., Kiss, D. J. & Keseru, G. M. The impression of the secondary binding pocket on the pharmacology of sophistication A GPCRs. Entrance. Pharmacol. 13, 847788 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duan, J. et al. Construction of a G protein-coupled receptor with GRK2 and a biased ligand. Preprint at bioRxiv https://doi.org/10.1101/2022.10.19.512855 (2022).

  • Krumm, B. E. et al. Neurotensin receptor allosterism revealed in complicated with a biased allosteric modulator. Biochemistry 62, 1233–1248 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bouley, R. A. et al. A brand new paroxetine-based GRK2 inhibitor reduces internalization of the μ-opioid receptor. Mol. Pharmacol. 97, 392–401 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced movement for improved cryo-electron microscopy. Nat. Strategies 14, 331–332 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for fast unsupervised cryo-EM construction willpower. Nat. Strategies 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Punjani, A. & Fleet, D. J. 3D variability evaluation: resolving steady flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emsley, P. & Cowtan, Okay. Coot: model-building instruments for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Croll, T. I. ISOLDE: a bodily lifelike setting for mannequin constructing into low-resolution electron-density maps. Acta Crystallogr. D 74, 519–530 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction resolution. Acta Crystallogr. D 66, 213–221 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: construction visualization for researchers, educators, and builders. Protein Sci. 30, 70–82 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Share post:

    Subscribe

    spot_imgspot_img

    Popular

    More like this
    Related

    Cariuma Dropped These Sneakers in a New Print

    Your journey packing checklist isn't full with...

    Information to Driving the Pan-American Freeway

    Highway journeys are an effective way to...

    What’s Karma Yoga and Tips on how to Apply It? [According Bhagavad Gita]

    If you consider yoga, you could at all...