Dynamic analysis of metamaterials via laser-induced vibrational signatures

Date:


  • Meza, L. R., Das, S. & Greer, J. R. Robust, light-weight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Tancogne-Dejean, T., Diamantopoulou, M., Gorji, M. B., Bonatti, C. & Mohr, D. 3D plate-lattices: an rising class of low-density metamaterial exhibiting optimum isotropic stiffness. Adv. Mater. 30, 1803334 (2018).

    Article 

    Google Scholar
     

  • Berger, J. B., Wadley, H. N. & McMeeking, R. M. Mechanical metamaterials on the theoretical restrict of isotropic elastic stiffness. Nature 543, 533–537 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Krödel, S. & Daraio, C. Microlattice metamaterials for tailoring ultrasonic transmission with elastoacoustic hybridization. Phys. Rev. Appl. 6, 064005 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Frenzel, T., Köpfler, J., Jung, E., Kadic, M. & Wegener, M. Ultrasound experiments on acoustical exercise in chiral mechanical metamaterials. Nat. Commun. 10, 3384 (2019).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Bayat, A. & Gaitanaros, S. Wave directionality in three-dimensional periodic lattices. J. Appl. Mech. 85, 011004 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Portela, C. M. et al. Supersonic influence resilience of nanoarchitected carbon. Nat. Mater. 20, 1491–1497 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Lai, C. Q. & Daraio, C. Extremely porous microlattices as ultrathin and environment friendly influence absorbers. Int. J. Impression Eng. 120, 138–149 (2018).

    Article 

    Google Scholar
     

  • Dattelbaum, D. M., Ionita, A., Patterson, B. M., Department, B. A. & Kuettner, L. Shockwave dissipation by interface-dominated porous constructions. AIP Adv. 10, 075016 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Mueller, J., Matlack, Ok. H., Shea, Ok. & Daraio, C. Vitality absorption properties of periodic and stochastic 3D lattice supplies. Adv. Concept Simul. 2, 1900081 (2019).

    Article 

    Google Scholar
     

  • Weeks, J. S. & Ravichandran, G. Excessive strain-rate compression conduct of polymeric rod and plate Kelvin lattice constructions. Mech. Mater. 166, 104216 (2022).

    Article 

    Google Scholar
     

  • Guo, Y. et al. Minimal surface-based supplies for topological elastic wave guiding. Adv. Funct. Mater. 32, 2204122 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Matlack, Ok. H., Bauhofer, A., Krödel, S., Palermo, A. & Daraio, C. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption. Proc. Natl Acad. Sci. 113, 8386–8390 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Hussein, M. I. & Frazier, M. J. Metadamping: an emergent phenomenon in dissipative metamaterials. J. Sound Vib. 332, 4767–4774 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Hawreliak, J. A. et al. Dynamic conduct of engineered lattice supplies. Sci. Rep. 6, 28094 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Lind, J., Robinson, A. Ok. & Kumar, M. Perception into the coordinated jetting conduct in periodic lattice constructions underneath dynamic compression. J. Appl. Phys. 128, 015901 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Criminal, C. et al. Plate-nanolattices on the theoretical restrict of stiffness and energy. Nat. Commun. 11, 1579 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Bauer, J., Schroer, A., Schwaiger, R. & Kraft, O. Approaching theoretical energy in glassy carbon nanolattices. Nat. Mater. 15, 438–443 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Meza, L. R. et al. Resilient 3D hierarchical architected metamaterials. Proc. Natl Acad. Sci. USA 112, 11502–11507 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Portela, C. M. et al. Excessive mechanical resilience of self-assembled nanolabyrinthine supplies. Proc. Natl Acad. Sci. 117, 5686–5693 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Guell Izard, A., Bauer, J., Criminal, C., Turlo, V. & Valdevit, L. Ultrahigh vitality absorption multifunctional spinodal nanoarchitectures. Small 15, 1903834 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Babaee, S. et al. 3D mushy metamaterials with unfavorable Poisson’s ratio. Adv. Mater. 25, 5044–5049 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farzaneh, A., Pawar, N., Portela, C. M. & Hopkins, J. B. Sequential metamaterials with alternating Poisson’s ratios. Nat. Commun. 13, 1041 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Jin, L. et al. Guided transition waves in multistable mechanical metamaterials. Proc. Natl Acad. Sci. USA 117, 2319–2325 (2020).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar
     

  • Baravelli, E. & Ruzzene, M. Internally resonating lattices for bandgap technology and low-frequency vibration management. J. Sound Vib. 332, 6562–6579 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Iglesias Martínez, J. A. et al. Experimental remark of roton-like dispersion relations in metamaterials. Sci. Adv. 7, eabm2189 (2021).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Meza, L. R. et al. Reexamining the mechanical property area of three-dimensional lattice architectures. Acta Mater. 140, 424–432 (2017).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Lind, J., Jensen, B. J., Barham, M. & Kumar, M. In situ dynamic compression wave conduct in additively manufactured lattice supplies. J. Mater. Res. 34, 2–19 (2019).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Deshpande, V. S., Fleck, N. A. & Ashby, M. F. Efficient properties of the octet-truss lattice materials. J. Mech. Phys. Solids 49, 1747–1769 (2001).

    Article 
    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Bastek, J.-H., Kumar, S., Telgen, B., Glaesener, R. N. & Kochmann, D. M. Inverting the construction–property map of truss metamaterials by deep studying. Proc. Natl Acad. Sci. 119, e2111505119 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weeks, J. S., Gandhi, V. & Ravichandran, G. Shock compression conduct of stainless-steel 316L octet-truss lattice constructions. Int. J. Impression Eng. 169, 104324 (2022).

    Article 

    Google Scholar
     

  • Tancogne-Dejean, T., Spierings, A. B. & Mohr, D. Additively-manufactured metallic micro-lattice supplies for top particular vitality absorption underneath static and dynamic loading. Acta Mater. 116, 14–28 (2016).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Gongora, A. E. et al. Designing lattices for influence safety utilizing switch studying. Matter 5, 2829–2846 (2022).

    Article 

    Google Scholar
     

  • Mao, Y., He, Q. & Zhao, X. Designing advanced architectured supplies with generative adversarial networks. Sci. Adv. 6, eaaz4169 (2020).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Abi Ghanem, M. et al. Longitudinal eigenvibration of multilayer colloidal crystals and the impact of nanoscale contact bridges. Nanoscale 11, 5655–5665 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akimov, A., Younger, E., Sharp, J., Gusev, V. & Kent, A. Coherent hypersonic closed-pipe organ like modes in supported polymer movies. Appl. Phys. Lett. 99, 021912 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Dryburgh, P. et al. Measurement of the one crystal elasticity matrix of polycrystalline supplies. Acta Mater. 225, 117551 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rohbeck, N. et al. Impact of excessive pressure charges and temperature on the micromechanical properties of 3D-printed polymer constructions made by two-photon lithography. Mater. Des. 195, 108977 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Salari-Sharif, L. et al. Damping of selectively bonded 3D woven lattice supplies. Sci. Rep. 8, 14572 (2018).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Pouet, B. F. & Rasolofosaon, N. J. P. Measurement of broadband intrinsic ultrasonic attenuation and dispersion in solids with laser methods. J. Acoust. Soc. Am. 93, 1286–1292 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Garrett, S. L. Understanding Acoustics: An Experimentalist’s View of Sound and Vibration (Springer, 2020).

  • Szabo, T. L. Time area wave equations for lossy media obeying a frequency energy regulation. J. Acoust. Soc. Am. 96, 491–500 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Szabo, T. L. & Wu, J. A mannequin for longitudinal and shear wave propagation in viscoelastic media. J. Acoust. Soc. Am. 107, 2437–2446 (2000).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Patil, G. U. & Matlack, Ok. H. Efficient property analysis and evaluation of three-dimensional periodic lattices and composites via Bloch-wave homogenization. J. Acoust. Soc. Am. 145, 1259–1269 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Graff, Ok. F. Wave Movement in Elastic Solids (Dover Publications, 2012).

  • Gross, A., Pantidis, P., Bertoldi, Ok. & Gerasimidis, S. Correlation between topology and elastic properties of imperfect truss-lattice supplies. J. Mech. Phys. Solids 124, 577–598 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Liu, L., Kamm, P., García-Moreno, F., Banhart, J. & Pasini, D. Elastic and failure response of imperfect three-dimensional metallic lattices: the function of geometric defects induced by Selective Laser Melting. J. Mech. Phys. Solids 107, 160–184 (2017).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Glaesener, R. et al. Predicting the affect of geometric imperfections on the mechanical response of 2D and 3D periodic trusses. Acta Mater. 254, 118918 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. et al. Bioadhesive ultrasound for long-term steady imaging of various organs. Science 377, 517–523 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Share post:

    Subscribe

    spot_imgspot_img

    Popular

    More like this
    Related

    Cariuma Dropped These Sneakers in a New Print

    Your journey packing checklist isn't full with...

    Information to Driving the Pan-American Freeway

    Highway journeys are an effective way to...

    What’s Karma Yoga and Tips on how to Apply It? [According Bhagavad Gita]

    If you consider yoga, you could at all...