23.9 C
Los Angeles
Saturday, July 27, 2024

Disordered enthalpy–entropy descriptor for high-entropy ceramics discovery

NatureDisordered enthalpy–entropy descriptor for high-entropy ceramics discovery


  • Zhang, R.-Z. & Reece, M. J. Evaluate of excessive entropy ceramics: design, synthesis, construction and properties. J. Mater. Chem. A 7, 22148–22162 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Oses, C., Toher, C. & Curtarolo, S. Excessive-entropy ceramics. Nat. Rev. Mater. 5, 295–309 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Feng, L., Fahrenholtz, W. G. & Brenner, D. W. Excessive-entropy ultra-high-temperature borides and carbides: a brand new class of supplies for excessive environments. Annu. Rev. Mater. Res. 51, 165–185 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sarker, P. et al. Excessive-entropy high-hardness metallic carbides found by entropy descriptors. Nat. Commun. 9, 4980 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calzolari, A. et al. Plasmonic high-entropy carbides. Nat. Commun. 13, 5993 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oganov, A. R. (ed.) Fashionable Strategies of Crystal Construction Prediction (Wiley, 2010).

  • Dellago, C., Bolhuis, P. G., Csajka, F. S. & Chandler, D. Transition path sampling and the calculation of fee constants. J. Chem. Phys. 108, 1964–1977 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Solar, W. et al. The thermodynamic scale of inorganic crystalline metastability. Sci. Adv. 2, e1600225 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aykol, M., Dwaraknath, S. S., Solar, W. & Persson, Okay. A. Thermodynamic restrict for synthesis of metastable inorganic supplies. Sci. Adv. 4, eaaq0148 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. et al. Mining unexplored chemistries for phosphors for high-color-quality white-light-emitting diodes. Joule 2, 914–926 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bartel, C. J., Weimer, A. W., Lany, S., Musgrave, C. B. & Holder, A. M. The position of decomposition reactions in assessing first-principles predictions of strong stability. NPJ Comput. Mater. 5, 4 (2019).

    Article 
    ADS 

    Google Scholar
     

  • O’Donnell, S. et al. Pushing the boundaries of metastability in semiconducting perovskite oxides for visible-light-driven water oxidation. Chem. Mater. 32, 3054–3064 (2020).

    Article 

    Google Scholar
     

  • Singstock, N. R. et al. Machine studying guided synthesis of multinary Chevrel section chalcogenides. J. Am. Chem. Soc. 143, 9113–9122 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abolhasani, M. & Kumacheva, E. The rise of self-driving labs in chemical and supplies sciences. Nat. Synth. 2, 483–492 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hart, G. L. W., Mueller, T., Toher, C. & Curtarolo, S. Machine studying and alloys. Nat. Rev. Mater. 6, 730–755 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hossain, M. D. et al. Entropy landscaping of high-entropy carbides. Adv. Mater. 33, 2102904 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Esters, M. et al. aflow.org: an internet ecosystem of databases, software program and instruments. Comput. Mater. Sci. 216, 111808 (2023).

    Article 

    Google Scholar
     

  • Oses, C. et al. aflow++: a C++ framework for autonomous supplies design. Comput. Mater. Sci. 217, 111889 (2023).

    Article 

    Google Scholar
     

  • de Fontaine, D. in Stable State Physics Vol. 47 (eds Ehrenreich, H. & Turnbull, D.) 33–176 (Educational Press, 1994).

  • Lederer, Y., Toher, C., Vecchio, Okay. S. & Curtarolo, S. The seek for excessive entropy alloys: a high-throughput ab initio strategy. Acta Mater. 159, 364–383 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, Okay., Oses, C. & Curtarolo, S. Modeling off-stoichiometry supplies with a high-throughput ab-initio strategy. Chem. Mater. 28, 6484–6492 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Esters, M. et al. Settling the matter of the position of vibrations within the stability of high-entropy carbides. Nat. Commun. 12, 5747 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krug, R. R., Hunter, W. G. & Grieger, R. A. Statistical interpretation of enthalpy – entropy compensation. Nature 261, 566–567 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Miracle, D. B. & Senkov, O. N. A essential assessment of excessive entropy alloys and associated ideas. Acta Mater. 122, 448–511 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ye, B., Wen, T., Huang, Okay., Wang, C.-Z. & Chu, Y. First-principles research, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic. J. Am. Ceram. Soc. 102, 4344–4352 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yan, X. et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. J. Am. Ceram. Soc. 101, 4486–4491 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, J. et al. Excessive-entropy carbide: a novel class of multicomponent ceramics. Ceram. Int. 44, 22014–22018 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Dippo, O. F., Mesgarzadeh, N., Harrington, T. J., Schrader, G. D. & Vecchio, Okay. S. Bulk high-entropy nitrides and carbonitrides. Sci. Rep. 10, 21288 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Réjasse, F., Rapaud, O., Trolliard, G., Masson, O. & Maitre, A. Experimental investigation and thermodynamic analysis of the C-O-Zr ternary system. RSC Adv. 6, 100122–100135 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Réjasse, F., Rapaud, O., Trolliard, G., Masson, O. & Maitre, A. Experimental investigation and thermodynamic analysis of the C-Hf-O ternary system. J. Am. Chem. Soc. 100, 3757–3770 (2017).


    Google Scholar
     

  • Barrett, C. S. & Massalski, T. B. Construction of Metals third edn (Pergamon Press, 1980).

  • Feng, L., Monteverde, F., Fahrenholtz, W. G. & Hilmas, G. E. Superhard high-entropy AlB2-type diboride ceramics. Scr. Mater. 199, 113855 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Friedrich, R. et al. Coordination corrected ab initio formation enthalpies. NPJ Comput. Mater. 5, 59 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Citadel, E., Csanádi, T., Grasso, S., Dusza, J. & Reece, M. Processing and properties of high-entropy ultra-high temperature carbides. Sci. Rep. 8, 8609 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chicardi, E., García-Garrido, C., Hernández-Saz, J. & Gotor, F. Synthesis of all equiatomic five-transition metals excessive entropy carbides of the IVB (Ti, Zr, Hf) and VB (V, Nb, Ta) teams by a low temperature route. Ceram. Int. 46, 21421–21430 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Harrington, T. J. et al. Section stability and mechanical properties of novel excessive entropy transition metallic carbides. Acta Mater. 166, 271–280 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chicardi, E., García-Garrido, C. & Gotor, F. J. Low temperature synthesis of an equiatomic (TiZrHfVNb)C5 excessive entropy carbide by a mechanically-induced carbon diffusion route. Ceram. Int. 45, 21858–21863 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wei, X.-F. et al. Excessive entropy carbide ceramics from completely different beginning supplies. J. Eur. Ceram. Soc. 39, 2989–2994 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kaufmann, Okay. et al. Discovery of high-entropy ceramics by way of machine studying. NPJ Comput. Mater. 6, 42 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, P. et al. Excessive-entropy carbide-nitrides with enhanced toughness and sinterability. Sci. China Mater. 64, 2037–2044 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wen, T., Ye, B., Nguyen, M. C., Ma, M. & Chu, Y. Thermophysical and mechanical properties of novel high-entropy metallic nitride-carbides. J. Am. Ceram. Soc. 103, 6475–6489 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ma, S. et al. Synthesis of novel single-phase high-entropy metallic carbonitride ceramic powders. Int. J. Refract. Metals Laborious Mater. 94, 105390 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, D., Liu, H., Ning, S., Ye, B. & Chu, Y. Synthesis of high-purity high-entropy metallic diboride powders by boro/carbothermal discount. J. Am. Ceram. Soc. 102, 7071–7076 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, D., Wen, T., Ye, B. & Chu, Y. Synthesis of superfine high-entropy metallic diboride powders. Scr. Mater. 167, 110–114 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gild, J. et al. Thermal conductivity and hardness of three single-phase high-entropy metallic diborides fabricated by borocarbothermal discount and spark plasma sintering. Ceram. Int. 46, 6906–6913 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Microstructure and mechanical properties of high-entropy borides derived from boro/carbothermal discount. J. Eur. Ceram. Soc. 39, 3920–3924 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gild, J., Kaufmann, Okay., Vecchio, Okay. & Luo, J. Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics. Scr. Mater. 170, 106–110 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Feng, L., Fahrenholtz, W. G. & Hilmas, G. E. Processing of dense high-entropy boride ceramics. J. Eur. Ceram. Soc. 40, 3815–3823 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gild, J. et al. Excessive-entropy metallic diborides: a brand new class of high-entropy supplies and a brand new sort of ultrahigh temperature ceramics. Sci. Rep. 6, 37946 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tallarita, G., Licheri, R., Garroni, S., Orrù, R. & Cao, G. Novel processing route for the fabrication of bulk high-entropy metallic diborides. Scr. Mater. 158, 100–104 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Dense high-entropy boride ceramics with ultra-high hardness. Scr. Mater. 164, 135–139 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tallarita, G. et al. Excessive-entropy transition metallic diborides by reactive and non-reactive spark plasma sintering: a comparative investigation. J. Eur. Ceram. Soc. 40, 942–952 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Iwan, S. et al. Excessive-pressure high-temperature synthesis and thermal equation of state of high-entropy transition metallic boride. AIP Adv. 11, 035107 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Qin, M. et al. Twin-phase high-entropy ultra-high temperature ceramics. J. Eur. Ceram. Soc. 40, 5037–5050 (2020).

    Article 
    CAS 

    Google Scholar
     

  • A. Drabold, D. Matters within the principle of amorphous supplies. Eur. Phys. J. B 68, 1–21 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Perim, E. et al. Spectral descriptors for bulk metallic glasses based mostly on the thermodynamics of competing crystalline phases. Nat. Commun. 7, 12315 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hicks, D. et al. AFLOW-SYM: platform for the entire, automated and self-consistent symmetry evaluation of crystals. Acta Crystallogr. Sect. A 74, 184–203 (2018).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Hicks, D. et al. AFLOW-XtalFinder: a dependable option to establish crystalline prototypes. NPJ Comput. Mater. 7, 30 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Calderon, C. E. et al. The AFLOW normal for high-throughput supplies science calculations. Comput. Mater. Sci. 108, 233–238 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Chepulskii, R. V. & Curtarolo, S. Calculation of solubility in titanium alloys from first rules. Acta Mater. 57, 5314 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oses, C. et al. AFLOW-CHULL: cloud-oriented platform for autonomous section stability evaluation. J. Chem. Inf. Mannequin. 58, 2477–2490 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taylor, R. H. et al. A RESTful API for exchanging supplies information within the AFLOWLIB.org consortium. Comput. Mater. Sci. 93, 178–192 (2014).

    Article 

    Google Scholar
     

  • Rose, F. et al. AFLUX: the LUX supplies search API for the AFLOW information repositories. Comput. Mater. Sci. 137, 362–370 (2017).

    Article 

    Google Scholar
     

  • George, E. P., Raabe, D. & Ritchie, R. O. Excessive-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Toher, C. et al. Excessive-entropy ceramics: propelling purposes via dysfunction. MRS Bull. 47, 194–202 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, L. et al. Excessive-entropy thermal barrier coating of rare-earth zirconate: a case research on (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 ready by atmospheric plasma spraying. J. Eur. Ceram. Soc. 40, 5731–5739 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, J. et al. Extremely-low thermal conductivity and enhanced mechanical properties of high-entropy uncommon earth niobates (RE3NbO7, RE = Dy, Y, Ho, Er, Yb). J. Eur. Ceram. Soc. 41, 1052–1057 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, J. et al. Twin-phase rare-earth-zirconate high-entropy ceramics with glass-like thermal conductivity. J. Eur. Ceram. Soc. 41, 2861–2869 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, L. et al. Achieved restrict thermal conductivity and enhancements of mechanical properties in fluorite RE3NbO7 by way of entropy engineering. Appl. Phys. Lett. 118, 071905 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Braic, V., Vladescu, A., Balaceanu, M., Luculescu, C. R. & Braic, M. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C laborious coatings. Surf. Coat. Technol. 211, 117–121 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hsueh, H.-T., Shen, W.-J., Tsai, M.-H. & Yeh, J.-W. Impact of nitrogen content material and substrate bias on mechanical and corrosion properties of high-entropy movies (AlCrSiTiZr)100−xNx. Surf. Coat. Technol. 206, 4106–4112 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Dinu, M. et al. In vitro corrosion resistance of Si containing multi-principal ingredient carbide coatings. Mater. Corros. 67, 908–914 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Malinovskis, P. et al. Synthesis and characterization of multicomponent (CrNbTaTiW)C movies for elevated hardness and corrosion resistance. Mater. Des. 149, 51–62 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ye, B., Wen, T., Liu, D. & Chu, Y. Oxidation habits of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics at 1073-1473 Okay in air. Corros. Sci. 153, 327–332 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Y. et al. Electrical and thermal transport behaviours of high-entropy perovskite thermoelectric oxides. J. Adv. Ceram. 10, 377–384 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, B. et al. Excessive-entropy-stabilized chalcogenides with excessive thermoelectric efficiency. Science 371, 830–834 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, B. et al. Entropy engineering promotes thermoelectric efficiency in p-type chalcogenides. Nat. Commun. 12, 3234 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarkar, A. et al. Excessive entropy oxides for reversible power storage. Nat. Commun. 9, 3400 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Y. et al. A high-entropy metallic oxide as chemical anchor of polysulfide for lithium-sulfur batteries. Power Storage Mater. 23, 678–683 (2019).

    Article 

    Google Scholar
     

  • Chen, Y. et al. Alternatives for high-entropy supplies in rechargeable batteries. ACS Mater. Lett. 3, 160–170 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H. et al. Entropy-stabilized metallic oxide strong options as CO oxidation catalysts with high-temperature stability. J. Mater. Chem. A 6, 11129–11133 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhai, S. et al. Using poly-cation oxides to decrease the temperature of two-step thermochemical water splitting. Power Environ. Sci. 11, 2172–2178 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Batchelor, T. A. A. et al. Excessive-entropy alloys as a discovery platform for electrocatalysis. Joule 3, 834–845 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H. et al. Mechanochemical synthesis of excessive entropy oxide supplies below ambient circumstances: dispersion of catalysts by way of entropy maximization. ACS Mater. Lett. 1, 83–88 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fracchia, M. et al. Stabilization by configurational entropy of the Cu(II) lively website throughout CO oxidation on Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O. J. Phys. Chem. Lett. 11, 3589–3593 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehl, M. J. et al. The AFLOW Library of Crystallographic Prototypes: half 1. Comput. Mater. Sci. 136, S1–S828 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hicks, D. et al. The AFLOW Library of Crystallographic Prototypes: half 2. Comput. Mater. Sci. 161, S1–S1011 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hicks, D. et al. The AFLOW Library of Crystallographic Prototypes: half 3. Comput. Mater. Sci. 199, 110450 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, F. et al. Liquid precursor-derived high-entropy carbide nanopowders. Ceram. Int. 45, 22437–22441 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Feng, L., Fahrenholtz, W. G., Hilmas, G. E. & Zhou, Y. Synthesis of single-phase high-entropy carbide powders. Scr. Mater. 162, 90–93 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Positive, J., Vishnu, S. S. M., Kim, H.-Okay. & Schwandt, C. Facile electrochemical synthesis of nanoscale (TiNbTaZrHf)C high-entropy carbide powder. Angew. Chem. Int. Ed. 59, 11830–11835 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Feng, L., Fahrenholtz, W. G., Hilmas, G. E. & Curtarolo, S. Boro/carbothermal discount co-synthesis of dual-phase high-entropy boride-carbide ceramics. J. Am. Ceram. Soc. 43, 2708–2712 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Arganda-Carreras, I. et al. Trainable Weka segmentation: a machine studying device for microscopy pixel classification. Bioinformatics 33, 2424–2426 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Check out our other content

    Check out other tags:

    Most Popular Articles