19.1 C
Los Angeles
Saturday, July 27, 2024

Damaging mixing enthalpy stable options ship excessive power and ductility

NatureDamaging mixing enthalpy stable options ship excessive power and ductility


  • Lei, Z. F. et al. Enhanced power and ductility in a high-entropy alloy through ordered oxygen complexes. Nature 563, 546–550 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Miracle, D. B. & Senkov, O. N. A crucial assessment of excessive entropy alloys and associated ideas. Acta Mater. 122, 448–511 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, L. et al. Tailoring planar slip to attain pure metal-like ductility in body-centred-cubic multi-principal aspect alloys. Nat. Mater. 22, 950–957 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, S. L. et al. Pure-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility. Nat. Mater. 19, 1175–1181 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, R. et al. Superior Excessive-temperature power in a supersaturated refractory high-entropy alloy. Adv. Mater. 33, 2102401 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Senkov, O. N. et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd 509, 6043–6048 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Ma, E. & Wu, X. Tailoring heterogeneities in high-entropy alloys to advertise strength-ductility synergy. Nat. Commun. 10, 5623 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senkov, O. N. & Semiatin, S. L. Microstructure and properties of a refractory high-entropy alloy after chilly working. J. Alloys Compd 649, 1110–1123 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S.-P., Ma, E. & Xu, J. New ternary equi-atomic refractory medium-entropy alloys with tensile ductility: Hafnium versus titanium into NbTa-based answer. Intermetallics 107, 15–23 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Senkov, O. N., Wilks, G. B., Scott, J. M. & Miracle, D. B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory excessive entropy alloys. Intermetallics 19, 698–706 (2011).

    Article 
    CAS 

    Google Scholar
     

  • George, E. P., Raabe, D. & Ritchie, R. O. Excessive-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • George, E. P. & Ritchie, R. O. Excessive-entropy supplies. MRS Bull. 47, 145–150 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Li, Z. M., Pradeep, Ok. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227–230 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • An, Z. B. et al. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the precept of most lattice distortion. J. Mater. Sci. Tech. 79, 109–117 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ma, E. & Zhu, T. In direction of power–ductility synergy by way of the design of heterogeneous nanostructures in metals. Mater. Right now 20, 323–331 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lilensten, L. et al. Examine of a bcc multi-principal aspect alloy: tensile and easy shear properties and underlying deformation mechanisms. Acta Mater. 142, 131–141 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Basinski, Z. S., Szczerba, M. S. & Embury, J. D. Tensile instability in face-centred cubic supplies. Philos. Magazine. A 76, 743–752 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, H. L. et al. Section-transformation ductilization of brittle high-entropy alloys through metastability engineering. Adv. Mater. 29, 1701678 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Su, I.-A. et al. Strengthening mechanisms and microstructural evolution of ductile refractory medium-entropy alloy Hf20Nb10Ti35Zr35. Scr. Mater. 206, 114225 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. B. et al. Deformation twinning in Ti48.9Zr32.0Nb12.6Ta6.5 medium entropy alloy. Mater. Sci. Eng. A 809, 140931 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bu, Y. Q. et al. Native chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys. Mater. Right now 46, 28–34 (2021).

    Article 
    CAS 

    Google Scholar
     

  • An, Z. B. et al. Spinodal-modulated stable answer delivers a robust and ductile refractory high-entropy alloy. Mater. Horiz. 8, 948–955 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mills, L. H. et al. Temperature-dependent tensile conduct of the HfNbTaTiZr multi-principal aspect alloy. Acta Mater. 245, 118618 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, T. X. et al. CALPHAD-aided design for superior thermal stability and mechanical conduct in a TiZrHfNb refractory high-entropy alloy. Acta Mater. 246, 118728 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Y. J. et al. Attaining excessive power and ductility in high-entropy alloys through spinodal decomposition-induced compositional heterogeneity. J. Mater. Sci. Tech. 141, 149–154 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Cui, D. C. et al. Oxygen-assisted spinodal construction achieves 1.5 GPa yield power in a ductile refractory high-entropy alloy. J. Mater. Sci. Tech. 157, 11–20 (2023).

    Article 

    Google Scholar
     

  • Williams, D. B. & Carterm, C. B. Transmission Electron Microscopy: A Textbook for Supplies Science (Springer, 2009).

  • Zhang, B. et al. Aspect-resolved atomic construction imaging of rocksalt Ge2Sb2Te5 phase-change materials. Appl. Phys. Lett. 108, 191902 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Yang, T. et al. Multicomponent intermetallic nanoparticles and very good mechanical behaviors of advanced alloys. Science 362, 933–937 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, X. L. Chemical short-range orders in high-/medium-entropy alloys. J. Mater. Sci. Tech. 147, 189–196 (2023).

    Article 

    Google Scholar
     

  • Dini, G., Ueji, R., Najafizadeh, A. & Monir-Vaghefi, S. M. Move stress evaluation of TWIP metal through the XRD measurement of dislocation density. Mater. Sci. Eng. A 527, 2759–2763 (2010).

    Article 

    Google Scholar
     

  • Smallman, R. E. & Westmacott, Ok. H. Stacking faults in face-centred cubic metals and alloys. Philos. Magazine. 2, 669–683 (1957).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eleti, R. R. et al. Plastic deformation of solid-solution strengthened Hf-Nb-Ta-Ti-Zr body-centered cubic medium/high-entropy alloys. Scri. Mater. 200, 113927 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xian, X. et al. A high-entropy V35Ti35Fe15Cr10Zr5 alloy with wonderful high-temperature power. Mater. Design 121, 229–236 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Uniting tensile ductility with ultrahigh power through composition undulation. Nature 604, 273–279 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Dynamic mechanisms of strengthening and softening of coherent twin boundary through dislocation pile-up and cross-slip. Mater. Res. Lett. 10, 539–546 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. Light-weight Zr1.2V0.8NbTixAly high-entropy alloys with excessive tensile power and ductility. Mater. Sci. Eng. A 814, 141234 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yurchenko, N. et al. Overcoming the strength-ductility trade-off in refractory medium-entropy alloys through managed B2 ordering. Mater. Res. Lett. 10, 813–823 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. D. et al. Section stability and mechanical properties of AlHfNbTiZr high-entropy alloys. Mater. Sci. Eng. A 724, 249–259 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, S. et al. Microstructure and mechanical properties of light-weight Ti3Zr1.5NbVAlx (x = 0, 0.25, 0.5 and 0.75) refractory advanced concentrated alloys. J. Mater. Sci. Tech. 130, 64–74 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yurchenko, N. et al. Impact of B2 ordering on the tensile mechanical properties of refractory AlxNb40Ti40V20−x medium-entropy alloys. J. Alloys Compd. 937, 168465 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ding, Q. Q. et al. Tuning aspect distribution, construction and properties by composition in high-entropy alloys. Nature 574, 223–227 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, E. Uncommon dislocation conduct in high-entropy alloys. Scri. Mater. 181, 127–133 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. F. et al. Direct statement of chemical short-range order in a medium-entropy alloy. Nature 592, 712–716 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xun, Ok. H. et al. Native chemical inhomogeneities in TiZrNb-based refractory high-entropy alloys. J. Mater. Sci. Tech. 135, 221–230 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bi, L. X. et al. Weak enthalpy-interaction-element-modulated NbMoTaW high-entropy alloy skinny movies. Appl. Surf. Sci. 565, 150462 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Williamson, G. Ok. & Smallman, R. E. III Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye–Scherrer spectrum. Philos. Magazine. 1, 34–46 (1956).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, N. et al. Micromechanical behaviors of Fe20Co30Cr25Ni25 excessive entropy alloys with partially and fully recrystallized microstructures investigated by in-situ high-energy X-ray diffraction. Metall. Mater. Trans. A 52, 3674–3683 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rosenauer, A. et al. Measurement of specimen thickness and composition in Al(x)Ga(1−x)N/GaN utilizing high-angle annular darkish area pictures. Ultramicroscopy 109, 1171–1182 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lebeau, J. M. & Stemmer, S. Experimental quantification of annular dark-field pictures in scanning transmission electron microscopy. Ultramicroscopy 108, 1653–1658 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LeBeau, J. M., Findlay, S. D., Allen, L. J. & Stemmer, S. Quantitative atomic decision scanning transmission electron microscopy. Phys. Rev. Lett. 100, 206101 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Van Aert, S. et al. Process to rely atoms with reliable single-atom sensitivity. Phys. Rev. B 87, 064107 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y. et al. Strong-solution part formation guidelines for multi-component alloys. Adv. Eng. Mater. 10, 534–538 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Senkov, O. N., Senkova, S. V. & Woodward, C. Impact of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214–228 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cantor, B. Multicomponent high-entropy Cantor alloys. Prog. Mater Sci. 120, 100754 (2021).

  • Takeuchi, A. & Inoue, A. Classification of bulk metallic glasses by atomic dimension distinction, warmth of blending and interval of constituent parts and its software to characterization of the principle alloying aspect. Mater. Trans. 46, 2817–2829 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Check out our other content

    Check out other tags:

    Most Popular Articles