Altermagnetic lifting of Kramers spin degeneracy

Date:


  • Kramers, H. A. Théorie générale de la rotation paramagnétique dans les cristaux. Proc. Amsterdam Akad. 33, 959–972 (1930).

    CAS 

    Google Scholar
     

  • Wigner, E. P. Über die Operation der Zeitumkehr in der Quantenmechanik. Nachr. Ges. Wiss. Gottingen, Math. Phys. Kl. 1932, 546–559 (1932).


    Google Scholar
     

  • Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in information storage. Nat. Mater. 6, 813–823 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ralph, D. C. & Stiles, M. D. Spin switch torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bader, S. D. & Parkin, S. Spintronics. Annu. Rev. Condens. Matter Phys. 1, 71–88 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bhatti, S. et al. Spintronics based mostly random entry reminiscence: a assessment. Mater. In the present day 20, 530–548 (2017).

    Article 

    Google Scholar
     

  • Manchon, A. et al. Present-induced spin-orbit torques in ferromagnetic and antiferromagnetic techniques. Rev. Mod. Phys. 91, 035004 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Corridor impact. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Franz, M. & Molenkamp, L. (eds) Topological Insulators Vol. 6 (Elsevier, 2013).

  • Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

    Article 

    Google Scholar
     

  • Zang, J., Cros, V. & Hoffmann, A. (eds) Topology in Magnetism (Springer, 2018).

  • Tokura, Y., Yasuda, Okay. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).

    Article 

    Google Scholar
     

  • Vergniory, M. G. et al. A whole catalogue of high-quality topological supplies. Nature 566, 480–485 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Corridor antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Landau, L. D. & Lifshitz, E. M. Electrodynamics of Steady Media 2nd edn (Pergamon Press, Oxford, 1984).

  • Winkler, R. Spin–Orbit Coupling Results in Two-Dimensional Electron and Gap Methods (Springer, 2003).

  • Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Krempaský, J. et al. Disentangling bulk and floor Rashba results in ferroelectric α-GeTe. Phys. Rev. B 94, 205111 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Sante, D. D., Barone, P., Bertacco, R. & Picozzi, S. Electrical management of the enormous Rashba impact in bulk GeTe. Adv. Mater. 25, 509–513 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Past typical ferromagnetism and antiferromagnetism: a part with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. 12, 031042 (2022).

    Article 

    Google Scholar
     

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Rising analysis panorama of altermagnetism. Phys. Rev. 12, 040501 (2022).

    Article 

    Google Scholar
     

  • Gonzalez Betancourt, R. D. et al. Spontaneous anomalous Corridor impact arising from an unconventional compensated magnetic part in a semiconductor. Phys. Rev. Lett. 130, 036702 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mazin, I. I. Altermagnetism in MnTe: origin, predicted manifestations, and routes to detwinning. Phys. Rev. B 107, L100418 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Néel, L. Magnetism and native molecular discipline. Science 174, 985–992 (1971).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kunitomi, N., Hamaguchi, Y. & Anzai, S. Neutron diffraction examine on manganese telluride. J. Phys. 25, 568–574 (1964).

    Article 
    CAS 

    Google Scholar
     

  • Šmejkal, L., Železný, J., Sinova, J. & Jungwirth, T. Electrical management of Dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett. 118, 106402 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Naka, M. et al. Spin present technology in natural antiferromagnets. Nat. Commun. 10, 4305 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • González-Hernández, R. et al. Environment friendly electrical spin splitter based mostly on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett. 126, 127701 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Naka, M., Motome, Y. & Web optimization, H. Perovskite as a spin present generator. Phys. Rev. B 103, 125114 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ma, H.-Y. et al. Multifunctional antiferromagnetic supplies with large piezomagnetism and noncollinear spin present. Nat. Commun. 12, 2846 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Šmejkal, L., Hellenes, A. B., González-Hernández, R., Sinova, J. & Jungwirth, T. Large and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling. Phys. Rev. X 12, 011028 (2022).


    Google Scholar
     

  • Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Corridor impact in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samanta, Okay. et al. Crystal Corridor and crystal magneto-optical impact in skinny movies of SrRuO3. J. Appl. Phys. 127, 213904 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Naka, M. et al. Anomalous Corridor impact in κ-type natural antiferromagnets. Phys. Rev. B 102, 075112 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hayami, S. & Kusunose, H. Important function of the anisotropic magnetic dipole within the anomalous Corridor impact. Phys. Rev. B 103, L180407 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mazin, I. I., Koepernik, Okay., Johannes, M. D., González-Hernández, R. & Šmejkal, L. Prediction of unconventional magnetism in doped FeSb2. Proc. Natl Acad. Sci. 118, e2108924118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naka, M., Motome, Y. & Web optimization, H. Anomalous Corridor impact in antiferromagnetic perovskites. Phys. Rev. B 106, 195149 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Feng, Z. et al. An anomalous Corridor impact in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bose, A. et al. Tilted spin present generated by an antiferromagnet. Nat. Electron. 5, 263–264 (2022).

    Article 

    Google Scholar
     

  • Bai, H. et al. Statement of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 128, 197202 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Karube, S. et al. Statement of spin-splitter torque in collinear antiferromagnetic RuO2. Phys. Rev. Lett. 129, 137201 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Strocov, V. N. et al. Smooth-X-ray ARPES facility on the ADRESS beamline of the SLS: ideas, technical realisation and scientific functions. J. Synchrotron Radiat. 21, 32–44 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kriegner, D. et al. A number of-stable anisotropic magnetoresistance reminiscence in antiferromagnetic MnTe. Nat. Commun. 7, 11623 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebert, H., Ködderitzsch, D. & Minár, J. Calculating condensed matter properties utilizing the KKR-Inexperienced’s operate methodology—latest developments and functions. Rep. Prog. Phys. 74, 096501 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Braun, J., Minár, J. & Ebert, H. Correlation, temperature and dysfunction: latest developments within the one-step description of angle-resolved photoemission. Phys. Rep. 740, 1–34 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Zhang, P. et al. A exact methodology for visualizing dispersive options in picture plots. Rev. Sci. Instrum. 82, 043712 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kriegner, D. et al. Magnetic anisotropy in antiferromagnetic hexagonal MnTe. Phys. Rev. B 96, 214418 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ishizaka, Okay. et al. Large Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 10, 521–526 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Braun, J. et al. Exploring the XPS restrict in mushy and exhausting x-ray angle-resolved photoemission utilizing a temperature-dependent one-step concept. Phys. Rev. B 88, 205409 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Hoesch, M. et al. Spin-polarized Fermi floor mapping. J. Electron. Spectrosc. Relat. Phenom. 124, 263–279 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Kriegner, D., Wintersberger, E. & Stangl, J. Xrayutilities: a flexible software for reciprocal house conversion of scattering information recorded with linear and space detectors. J. Appl. Crystallogr. 46, 1162–1170 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission research of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Strocov, V. Photoemission response of 2D electron states. J. Electron. Spectrosc. Relat. Phenom. 229, 100–107 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Powell, C. J. & Jablonski, A. Floor sensitivity of Auger-electron spectroscopy and X-ray photoelectron spectroscopy. J. Surf. Anal. 17, 170–176 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Strocov, V. N. et al. Three-dimensional electron realm in VSe2 by soft-x-ray photoelectron spectroscopy: origin of charge-density waves. Phys. Rev. Lett. 109, 086401 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Weber, F. et al. Three-dimensional Fermi floor of twoH–NbSe2: implications for the mechanism of cost density waves. Phys. Rev. B 97, 235122 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schröter, N. et al. Statement and management of maximal Chern numbers in a chiral topological semimetal. Science 369, 179–183 (2020).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Strocov, V. N. et al. Excessive-resolution mushy X-ray beamline ADRESS on the Swiss Gentle Supply for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies. J. Synchrotron Radiat. 17, 631–643 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dil, J. H. Spin and angle resolved photoemission on non-magnetic low-dimensional techniques. J. Phys. Condens. Matter 21, 403001 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 78, 1396–1396 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Minár, J. Correlation results in transition metals and their alloys studied utilizing the totally self-consistent KKR-based LSDA + DMFT scheme. J. Phys. Condens. Matter 23, 253201 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Lloyd, P. Wave propagation by means of an meeting of spheres: II. The density of single-particle eigenstates. Proc. Phys. Soc. 90, 207 (1967).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lloyd, P. & Smith, P. A number of scattering concept in condensed supplies. Adv. Phys. 21, 69–142 (1972).

    Article 
    ADS 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Share post:

    Subscribe

    spot_imgspot_img

    Popular

    More like this
    Related

    Cariuma Dropped These Sneakers in a New Print

    Your journey packing checklist isn't full with...

    Information to Driving the Pan-American Freeway

    Highway journeys are an effective way to...

    What’s Karma Yoga and Tips on how to Apply It? [According Bhagavad Gita]

    If you consider yoga, you could at all...