Goldin, G. A., Menikoff, R. & Sharp, D. H. Feedback on ‘normal principle for quantum statistics in two dimensions’. Phys. Rev. Lett. 54, 603–603 (1985).
Moore, G. & Seiberg, N. Classical and quantum conformal subject principle. Commun. Math. Phys. 123, 177–254 (1989).
Moore, G. & Learn, N. Nonabelions within the fractional quantum Corridor impact. Nucl. Phys. B 360, 362–396 (1991).
Wen, X. G. Non-Abelian statistics within the fractional quantum Corridor states. Phys. Rev. Lett. 66, 802–805 (1991).
Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
Wen, X.-G. Quantum Area Principle of Many-body Techniques Oxford Graduate Texts (Oxford Univ. Press, 2010).
Leinaas, J. M. & Myrheim, J. On the idea of an identical particles. Nuovo Cim. B 37, 1–23 (1977).
Goldin, G. A., Menikoff, R. & Sharp, D. H. Representations of an area present algebra in nonsimply related house and the Aharonov–Bohm impact. J. Math. Phys. 22, 1664–1668 (1981).
Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982).
Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Floor codes: in direction of sensible large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).
Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct commentary of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).
Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).
Satzinger, Okay. J. et al. Realizing topologically ordered states on a quantum processor. Science 374, 1237–1241 (2021).
Semeghini, G. et al. Probing topological spin liquids on a programmable quantum simulator. Science 374, 1242–1247 (2021).
Ryan-Anderson, C. et al. Implementing fault-tolerant entangling gates on the five-qubit code and the colour code. Preprint at https://arxiv.org/abs/2208.01863 (2022).
Iqbal, M. et al. Topological order from measurements and feed-forward on a trapped ion quantum pc. Preprint at https://arxiv.org/abs/2302.01917 (2023).
Foss-Feig, M. et al. Experimental demonstration of the benefit of adaptive quantum circuits. Preprint at https://arxiv.org/abs/2302.03029 (2023).
Pan, W. et al. Actual quantization of even-denominator fractional quantum Corridor state at ν=5/2 Landau stage filling issue. Phys. Rev. Lett. 83, 3530–3533 (1999).
Banerjee, M. et al. Commentary of half-integer thermal Corridor conductance. Nature 559, 205–210 (2018).
Ma, Okay. Okay. W., Peterson, M. R., Scarola, V. W. & Yang, Okay. in Encyclopedia of Condensed Matter Physics 2nd edn (ed. Chakraborty, T.) 324–365 (Educational Press, 2024); https://www.sciencedirect.com/science/article/pii/B9780323908009001359.
Willett, R. et al. Interference measurements of non-Abelian e/4 & Abelian e/2 quasiparticle braiding. Phys. Rev. X 13, 011028 (2023).
Feldman, D. E. & Halperin, B. I. Fractional cost and fractional statistics within the quantum Corridor results. Rep. Prog. Phys. 84, 076501 (2021).
Kitaev, A. Unpaired Majorana fermions in quantum wires. Phys. Uspekhi 44, 131–136 (2001).
Microsoft Quantum InAs–Al hybrid gadgets passing the topological hole protocol. Phys. Rev. B 107, 245423 (2023).
Bombin, H. Topological order with a twist: Ising anyons from an Abelian mannequin. Phys. Rev. Lett. 105, 030403 (2010).
Andersen, T. I. et al. Non-Abelian braiding of graph vertices in a superconducting processor. Nature 618, 264–269 (2023).
Xu, S. et al. Digital simulation of projective non-Abelian anyons with 68 superconducting qubits. Chin. Phys. Lett. 40, 060301 (2023).
Cui, S. X., Hong, S.-M. & Wang, Z. Common quantum computation with weakly integral anyons. Quantum Inf. Course of. 14, 2687–2727 (2015).
Barkeshli, M. & Sau, J. D. Bodily structure for a common topological quantum pc primarily based on a community of Majorana nanowires. Preprint at https://arxiv.org/abs/1509.07135 (2015).
Barkeshli, M., Jian, C.-M. & Qi, X.-L. Principle of defects in Abelian topological states. Phys. Rev. B 88, 235103 (2013).
Barkeshli, M., Jian, C.-M. & Qi, X.-L. Genons, twist defects, and projective non-Abelian braiding statistics. Phys. Rev. B 87, 045130 (2013).
Cong, I., Cheng, M. & Wang, Z. Common quantum computation with gapped boundaries. Phys. Rev. Lett. 119, 170504 (2017).
Wineland, D. J. et al. Experimental points in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 259–328 (1998).
Kielpinski, D., Monroe, C. & Wineland, D. J. Structure for a large-scale ion-trap quantum pc. Nature 417, 709–711 (2002).
Moses, S. A. et al. A race observe trapped-ion quantum processor. Phys. Rev. X 13, 041052 (2023).
Bravyi, S., Hastings, M. B. & Verstraete, F. Lieb–Robinson bounds and the technology of correlations and topological quantum order. Phys. Rev. Lett. 97, 050401 (2006).
Liu, Y.-J., Shtengel, Okay., Smith, A. & Pollmann, F. Strategies for simulating string-net states and anyons on a digital quantum pc. PRX Quantum 3, 040315 (2022).
Aharonov, D. & Touati, Y. Quantum circuit depth decrease bounds for homological codes. Preprint at https://arxiv.org/abs/1810.03912 (2018).
Raussendorf, R., Bravyi, S. & Harrington, J. Lengthy-range quantum entanglement in noisy cluster states. Phys. Rev. A 71, 062313 (2005).
Bolt, A., Duclos-Cianci, G., Poulin, D. & Stace, T. Foliated quantum error-correcting codes. Phys. Rev. Lett. 117, 070501 (2016).
Piroli, L., Styliaris, G. & Cirac, J. I. Quantum circuits assisted by native operations and classical communication: transformations and phases of matter. Phys. Rev. Lett. 127, 220503 (2021).
Tantivasadakarn, N., Vishwanath, A. & Verresen, R. Hierarchy of topological order from finite-depth unitaries, measurement, and feedforward. PRX Quantum 4, 020339 (2023).
Shi, B. Seeing topological entanglement by means of the knowledge convex. Phys. Rev. Res. 1, 033048 (2019).
Tantivasadakarn, N., Thorngren, R., Vishwanath, A. & Verresen, R. Lengthy-range entanglement from measuring symmetry-protected topological phases. Preprint at https://arxiv.org/abs/2112.01519 (2022).
Verresen, R., Tantivasadakarn, N. & Vishwanath, A. Effectively getting ready Schrödinger’s cat, fractons and non-Abelian topological order in quantum gadgets. Preprint at https://arxiv.org/abs/2112.03061 (2022).
Bravyi, S., Kim, I., Kliesch, A. & Koenig, R. Adaptive constant-depth circuits for manipulating non-Abelian anyons. Preprint at https://arxiv.org/abs/2205.01933 (2022).
Tantivasadakarn, N., Verresen, R. & Vishwanath, A. Shortest path to non-Abelian topological order on a quantum processor. Phys. Rev. Lett. 131, 060405 (2023).
Yoshida, B. Topological phases with generalized international symmetries. Phys. Rev. B 93, 155131 (2016).
Potter, A. C. & Vasseur, R. Symmetry constraints on many-body localization. Phys. Rev. B 94, 224206 (2016).
Senthil, T. Symmetry-protected topological phases of quantum matter. Annu. Rev. Condensed Matter Phys. 6, 299–324 (2015).
Briegel, H. J. & Raussendorf, R. Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001).
Wang, C. & Levin, M. Topological invariants for gauge theories and symmetry-protected topological phases. Phys. Rev. B 91, 165119 (2015).
Wang, J., Wen, X.-G. & Yau, S.-T. Quantum statistics and spacetime surgical procedure. Phys. Lett. B 807, 135516 (2020).
Putrov, P., Wang, J. & Yau, S.-T. Braiding statistics and hyperlink invariants of bosonic/fermionic topological quantum matter in 2+1 and three+1 dimensions. Ann. Phys. 384, 254–287 (2017).
Kulkarni, A., Mignard, M. & Schauenburg, P. A topological invariant for modular fusion classes. Preprint at https://arxiv.org/abs/1806.03158 (2021).
Dauphinais, G. & Poulin, D. Fault-tolerant quantum error correction for non-Abelian anyons. Commun. Math. Phys. 355, 519–560 (2017).
Lu, T.-C., Lessa, L. A., Kim, I. H. & Hsieh, T. H. Measurement as a shortcut to long-range entangled quantum matter. PRX Quantum 3, 040337 (2022).
Zhu, G.-Y., Tantivasadakarn, N., Vishwanath, A., Trebst, S. & Verresen, R. Nishimori’s cat: secure long-range entanglement from finite-depth unitaries and weak measurements. Phys. Rev. Lett. 131, 200201 (2023).
Lee, J. Y., Ji, W., Bi, Z. & Fisher, M. P. A. Decoding measurement-prepared quantum phases and transitions: from Ising mannequin to gauge principle, and past. Preprint at https://arxiv.org/abs/2208.11699 (2022).
Lu, T.-C., Zhang, Z., Vijay, S. & Hsieh, T. H. Combined-state long-range order and criticality from measurement and suggestions. PRX Quantum 4, 030318 (2023).
Mochon, C. Anyon computer systems with smaller teams. Phys. Rev. A 69, 032306 (2004).