IPBES. World evaluation report on biodiversity and ecosystem providers of the Intergovernmental Science-Coverage Platform on Biodiversity and Ecosystem Providers. Zenodo https://doi.org/10.5281/ZENODO.3831673 (2019).
Laurance, W. F., Sayer, J. & Cassman, Ok. G. Agricultural enlargement and its impacts on tropical nature. Tendencies Ecol. Evol. 29, 107–116 (2014).
Guillaume, T. et al. Carbon prices and advantages of Indonesian rainforest conversion to plantations. Nat. Commun. 9, 2388 (2018).
Rembold, Ok., Mangopo, H., Tjitrosoedirdjo, S. S. & Kreft, H. Plant variety, forest dependency and alien plant invasions in tropical agricultural landscapes. Biol. Conserv. 213, 234–242 (2017).
Barnes, A. D. et al. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nat. Ecol. Evol. 1, 1511–1519 (2017).
Turner, E. C. & Foster, W. A. The affect of forest conversion to grease palm on arthropod abundance and biomass in Sabah, Malaysia. J. Trop. Ecol. 25, 23–30 (2009).
Currie, D. J. Power and large-scale patterns of animal- and plant-species richness. Am. Nat. 137, 27–49 (1991).
Potapov, A. M., Klarner, B., Sandmann, D., Widyastuti, R. & Scheu, S. Linking dimension spectrum, power flux and trophic multifunctionality in soil meals webs of tropical land-use techniques. J. Anim. Ecol. 88, 1845–1859 (2019).
Schwarz, B. et al. Warming alters the energetic construction and performance however not resilience of soil meals webs. Nat. Clim. Change 7, 895–900 (2017).
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Towards a metabolic principle of ecology. Ecology 85, 1771–1789 (2004).
Barnes, A. D. et al. Power flux: the hyperlink between multitrophic biodiversity and ecosystem functioning. Tendencies Ecol. Evol. 33, 186–197 (2018).
Barnes, A. D. et al. Penalties of tropical land use for multitrophic biodiversity and ecosystem functioning. Nat. Commun. 5, 5351 (2014).
Thakur, M. P. Local weather warming and trophic mismatches in terrestrial ecosystems: the inexperienced–brown imbalance speculation. Biol. Lett. 16, 20190770 (2020).
Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).
de Vries, F. T. et al. Soil meals internet properties clarify ecosystem providers throughout European land use techniques. Proc. Natl Acad. Sci. USA 110, 14296–14301 (2013).
Barnes, A. D. et al. Biodiversity enhances the multitrophic management of arthropod herbivory. Sci. Adv. 6, eabb6603 (2020).
Scheu, S. Crops and generalist predators as hyperlinks between the below-ground and above-ground system. Fundamental Appl. Ecol. 2, 3–13 (2001).
Rosenberg, et al. The worldwide biomass and variety of terrestrial arthropods. Sci. Adv. 9, eabq4049 (2023).
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
Drescher, J. et al. Ecological and socio-economic features throughout tropical land use techniques after rainforest conversion. Phil. Trans. R. Soc. B 371, 20150275 (2016).
Ellwood, M. D. F. & Foster, W. A. Doubling the estimate of invertebrate biomass in a rainforest cover. Nature 429, 549–551 (2004).
Petersen, H. & Luxton, M. A comparative evaluation of soil fauna populations and their position in decomposition processes. Oikos 39, 288–388 (1982).
Dial, R. J., Ellwood, M. D. F., Turner, E. C. & Foster, W. A. Arthropod abundance, cover construction and microclimate in a Bornean lowland tropical rain forest. Biotropica 38, 643–652 (2006).
Raich, J. W., Clark, D. A., Schwendenmann, L. & Wooden, T. E. Aboveground tree development varies with belowground carbon allocation in a tropical rainforest atmosphere. PLoS ONE 9, e100275 (2014).
Jochum, M. et al. Lowering stoichiometric useful resource high quality drives compensatory feeding throughout trophic ranges in tropical litter invertebrate communities. Am. Nat. 190, 131–143 (2017).
Stork, N. E. What number of species of bugs and different terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).
Terborgh, J., Robinson, S. Ok., Parker, T. A., Munn, C. A. & Pierpont, N. Construction and group of an Amazonian forest hen neighborhood. Ecol. Monogr. 60, 213–238 (1990).
Mueller, Ok. E. et al. Mild, earthworms and soil sources as predictors of variety of 10 soil invertebrate teams throughout monocultures of 14 tree species. Soil Biol. Biochem. 92, 184–198 (2016).
Krashevska, V., Klarner, B., Widyastuti, R., Maraun, M. & Scheu, S. Impression of tropical lowland rainforest conversion into rubber and oil palm plantations on soil microbial communities. Biol. Fertil. Soil. 51, 697–705 (2015).
Grass, I. et al. Commerce-offs between multifunctionality and revenue in tropical smallholder landscapes. Nat. Commun. 11, 1186 (2020).
Edwards, D. P. et al. Selective-logging and oil palm: multitaxon impacts, biodiversity indicators and trade-offs for conservation planning. Ecol. Appl. 24, 2029–2049 (2014).
Prabowo, W. E. et al. Chook responses to lowland rainforest conversion in Sumatran smallholder landscapes, Indonesia. PLoS ONE 11, e0154876 (2016).
Ramos, D. et al. Rainforest conversion to rubber and oil palm reduces abundance, biomass and variety of cover spiders. PeerJ 10, e13898 (2022).
Kulmatiski, A. & Beard, Ok. H. Lengthy-term plant development legacies overwhelm short-term plant development results on soil microbial neighborhood construction. Soil Biol. Biochem. 43, 823–830 (2011).
Le Provost, G. et al. Contrasting responses of above- and belowground variety to a number of parts of land-use depth. Nat. Commun. 12, 3918 (2021).
Zhou, Z., Krashevska, V., Widyastuti, R., Scheu, S. & Potapov, A. Tropical land use alters practical variety of soil meals webs and results in monopolization of the detrital power channel. eLife 11, e75428 (2022).
Potapov, A. et al. Oil palm and rubber enlargement facilitates earthworm invasion in Indonesia. Biol. Invasions 23, 2783–2795 (2021).
Potapov, A. M. et al. Useful losses in floor spider communities because of habitat construction degradation below tropical land-use change. Ecology 101, e02957 (2020).
Rakotomalala, A. A. N. A., Ficiciyan, A. M. & Tscharntke, T. Intercropping enhances helpful arthropods and controls pests: a scientific overview and meta-analysis. Agric. Ecosyst. Environ. 356, 108617 (2023).
Camarretta, N. et al. Utilizing airborne laser scanning to characterize land-use techniques in a tropical panorama based mostly on vegetation structural metrics. Distant Sens. 13, 4794 (2021).
Tscharntke, T. et al. Conservation organic management and enemy variety on a panorama scale. Biol. Management 43, 294–309 (2007).
Corley, R. H. V. & Tinker, P. B. H. The Oil Palm (John Wiley & Sons, 2015).
Potapov, A. M. Multifunctionality of belowground meals webs: useful resource, dimension and spatial power channels. Biol. Rev. Camb. Philos. Soc. 97, 1691–1711 (2022).
Krashevska, et al. Micro-decomposer communities and decomposition processes in tropical lowlands as affected by land use and litter sort. Oecologia 187, 255–266 (2018).
Hyodo, F. et al. Gradual enrichment of 15N with humification of diets in a below-ground meals internet: relationship between 15N and weight loss program age decided utilizing 14C. Funct. Ecol. 22, 516–522 (2008).
Hannula, S. E. & Morriën, E. Will fungi clear up the carbon dilemma? Geoderma 413, 115767 (2022).
Susanti, W. I., Pollierer, M. M., Widyastuti, R., Scheu, S. & Potapov, A. Conversion of rainforest to grease palm and rubber plantations alters power channels in soil meals webs. Ecol. Evol. 9, 9027–9039 (2019).
Rooney, N. & McCann, Ok. S. Integrating meals internet variety, construction and stability. Tendencies Ecol. Evol. 27, 40–46 (2012).
Hyodo, F., Uchida, T., Kaneko, N. & Tayasu, I. Use of radiocarbon to estimate weight loss program ages of earthworms throughout completely different local weather areas. Appl. Soil Ecol. 62, 178–183 (2012).
Garnier, P., Makowski, D., Hedde, M. & Bertrand, M. Modifications in soil carbon mineralization associated to earthworm exercise rely on the time since inoculation and their density in soil. Sci. Rep. 12, 13616 (2022).
Angst, G. et al. Earthworms as catalysts within the formation and stabilization of soil microbial necromass. Glob. Change Biol. 28, 4775–4782 (2022).
Joly, F.-X. et al. Detritivore conversion of litter into faeces accelerates natural matter turnover. Commun. Biol. 3, 660 (2020).
Tao, F. et al. Microbial carbon use effectivity promotes international soil carbon storage. Nature 618, 981–985 (2023).
Buchkowski, R. W. & Lindo, Z. Stoichiometric and structural uncertainty in soil meals internet fashions. Funct. Ecol. 35, 288–300 (2021).
Potapov, A. M. et al. Feeding habits and multifunctional classification of soil-associated customers from protists to vertebrates. Biol. Rev. Camb. Philos. Soc. 97, 1057–1117 (2022).
Ashton‐Butt, A. et al. Replanting of first‐cycle oil palm leads to a second wave of biodiversity loss. Ecol. Evol. 9, 6433–6443 (2019).
Tao, H.-H. et al. Software of oil palm empty fruit bunch results on soil biota and features: a case research in Sumatra, Indonesia. Agric. Ecosyst. Environ. 256, 105–113 (2018).
Darras, Ok. F. A. et al. Lowering fertilizer and avoiding herbicides in oil palm plantations—ecological and financial valuations. Entrance. For. Glob. Change 2, 65 (2019).
Teuscher, M. et al. Experimental biodiversity enrichment in oil-palm-dominated landscapes in Indonesia. Entrance. Plant Sci. 7, 1538 (2016).
Ashraf, M. et al. Alley-cropping system can increase arthropod biodiversity and ecosystem features in oil palm plantations. Agric. Ecosyst. Environ. 260, 19–26 (2018).
Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen, M. C. Major forest cowl loss in Indonesia over 2000–2012. Nat. Clim. Change 4, 730–735 (2014).
Allen, Ok., Corre, M. D., Kurniawan, S., Utami, S. R. & Veldkamp, E. Spatial variability surpasses land-use change results on soil biochemical properties of transformed lowland landscapes in Sumatra, Indonesia. Geoderma 284, 42–50 (2016).
Sohlström, E. H. et al. Making use of generalized allometric regressions to foretell stay physique mass of tropical and temperate arthropods. Ecol. Evol. 8, 12737–12749 (2018).
Darras, Ok. et al. BioSounds: an open-source, on-line platform for ecoacoustics. F1000 Res. 9, 1224 (2020).
Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).
Azhar, A. et al. Rainforest conversion to money crops reduces abundance, biomass and species richness of parasitoid wasps in Sumatra, Indonesia. Agric. For. Entomol. 24, 506–515 (2022).
Nazarreta, R. et al. Rainforest conversion to smallholder plantations of rubber or oil palm results in species loss and neighborhood shifts in cover ants (Hymenoptera: Formicidae). Myrmecol. Information 30, 175–186 (2020).
Kasmiatun, et al. Rainforest conversion to smallholder money crops results in various declines of beetles (Coleoptera) on Sumatra. Biotropica 55, 119–131 (2023).
Mawan, A. et al. Response of arboreal Collembola communities to the conversion of lowland rainforest into rubber and oil palm plantations. BMC Ecol. Evol. 22, 144 (2022).
Klarner, B. et al. Trophic niches, variety and neighborhood composition of invertebrate high predators (Chilopoda) as affected by conversion of tropical lowland rainforest in Sumatra (Indonesia). PLoS ONE 12, e0180915 (2017).
Potapov, A. M., Scheu, S. & Tiunov, A. V. Trophic consistency of supraspecific taxa in below-ground invertebrate communities: comparability throughout lineages and taxonomic ranks. Funct. Ecol. 33, 1172–1183 (2019).
Petersen, H. Estimation of dry weight, recent weight and calorific content material of varied collembolan species. Pedobiologia 15, 222–243 (1975).
Mercer, R. D., Gabriel, A. G. A., Barendse, J., Marshall, D. J. & Chown, S. L. Invertebrate physique sizes from Marion Island. Antarct. Sci. 13, 135–143 (2001).
Hale, C. M., Reich, P. B. & Frelich, L. E. Allometric equations for estimation of ash-free dry mass from size measurements for chosen European earthworm species (Lumbricidae) within the Western Nice Lakes area. Am. Midl. Nat. 151, 179–185 (2004).
Brose, U. et al. Foraging principle predicts predator–prey power fluxes. J. Anim. Ecol. 77, 1072–1078 (2008).
Brose, U. et al. Predator traits decide food-web structure throughout ecosystems. Nat. Ecol. Evol. 3, 919–927 (2019).
Gauzens, B. et al. fluxweb: an R package deal to simply estimate power fluxes in meals webs. Strategies Ecol. Evol. 10, 270–279 (2019).
Peschel, Ok., Norton, R., Scheu, S. & Maraun, M. Do oribatid mites stay in enemy-free area? Proof from feeding experiments with the predatory mite Pergamasus septentrionalis. Soil Biol. Biochem. 38, 2985–2989 (2006).
Ehnes, R. B., Rall, B. C. & Brose, U. Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. Ecol. Lett. 14, 993–1000 (2011).
Meijide, A. et al. Impression of forest conversion to grease palm and rubber plantations on microclimate and the position of the 2015 ENSO occasion. Agric. For. Meteorol. 252, 208–219 (2018).
Jochum, M. et al. For flux’s sake: basic concerns for energy-flux calculations in ecological communities. Ecol. Evol. 11, 12948–12969 (2021).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Becoming linear mixed-effects fashions utilizing lme4. J. Stat. Softw. 67, 1–48 (2015).
Fox, J. & Weisberg, S. An R Companion to Utilized Regression (Sage, 2011).
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Combined Results Fashions and Extensions in Ecology with R (Springer Science & Enterprise Media, 2009).
Pinheiro, J. & Bates, D. M. Combined-Results Fashions in S and S-PLUS (Springer, 2000).
Digel, C., Curtsdotter, A., Riede, J., Klarner, B. & Brose, U. Unravelling the advanced construction of forest soil meals webs: larger omnivory and extra trophic ranges. Oikos 123, 1157–1172 (2014).
Wolkovich, E. M. Reticulated channels in soil meals webs. Soil Biol. Biochem. 102, 18–21 (2016).