Warmth conductance of the quantum Corridor bulk

Date:


  • Laughlin, R. B. Quantized Corridor conductivity in 2 dimensions. Phys. Rev. B 23, 5632–5633 (1981).

    Article 

    Google Scholar
     

  • Halperin, B. I. Quantized Corridor conductance, current-carrying edge states, and the existence of prolonged states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).

    Article 

    Google Scholar
     

  • Prang, R. E. & Girvin, S. M. (eds) The Quantum Corridor Impact (Springer, 1987).

  • Tsui, D. C., Störmer, H. L. & Gossard, A. C. Zero-resistance state of two-dimensional electrons in a quantizing magnetic area. Phys. Rev. B 25, 1405–1407 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Boebinger, G. S. et al. Activation energies and localization within the fractional quantum Corridor impact. Phys. Rev. B 36, 7919–7929 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Boebinger, G. S., Chang, A. M., Stormer, H. L. & Tsui, D. C. Magnetic area dependence of activation energies within the fractional quantum Corridor impact. Phys. Rev. Lett. 55, 1606–1609 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kane, C. L. & Fisher, M. P. A. Quantized thermal transport within the fractional quantum Corridor impact. Phys. Rev. B 55, 15832–15837 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Cappelli, A., Huerta, M. & Zemba, G. R. Thermal transport in chiral conformal theories and hierarchical quantum Corridor states. Nucl. Phys. B 636, 568–582 (2002).

    Article 
    MathSciNet 

    Google Scholar
     

  • Learn, N. & Inexperienced, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Corridor impact. Phys. Rev. B 61, 10267–10297 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Jezouin, S. et al. Quantum restrict of warmth stream throughout a single digital channel. Science 342, 601–604 (2013).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Banerjee, M. et al. Remark of half-integer thermal Corridor conductance. Nature 559, 205–210 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banerjee, M. et al. Noticed quantization of anyonic warmth stream. Nature 545, 75–79 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Srivastav, S. Ok. et al. Common quantized thermal conductance in graphene. Sci. Adv. 5, eaaw5798 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dutta, B., Umansky, V., Banerjee, M. & Heiblum, M. Remoted ballistic non-abelian interface channel. Science 377, 1198–1201 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Melcer, R. A. et al. Absent thermal equilibration on fractional quantum Corridor edges over macroscopic scale. Nat. Commun. 13, 376 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srivastav, S. Ok. et al. Vanishing thermal equilibration for hole-conjugate fractional quantum Corridor states in graphene. Phys. Rev. Lett. 126, 216803 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Srivastav, S. Ok. et al. Dedication of topological edge quantum numbers of fractional quantum Corridor phases by thermal conductance measurements. Nat. Commun. 13, 5185 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altimiras, C. et al. Chargeless warmth transport within the fractional quantum Corridor regime. Phys. Rev. Lett. 109, 026803 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venkatachalam, V., Hart, S., Pfeiffer, L., West, Ok. & Yacoby, A. Native thermometry of impartial modes on the quantum Corridor edge. Nat. Phys. 8, 676–681 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Inoue, H. et al. Proliferation of impartial modes in fractional quantum Corridor states. Nat. Commun. 5, 4067 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanatar, M. A., Paglione, J., Petrovic, C. & Taillefer, L. Anisotropic violation of the Wiedemann–Franz regulation at a quantum crucial level. Science 316, 1320–1322 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wakeham, N. et al. Gross violation of the Wiedemann–Franz regulation in a quasi-one-dimensional conductor. Nat. Commun. 2, 396 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Crossno, J. et al. Remark of the Dirac fluid and the breakdown of the Wiedemann–Franz regulation in graphene. Science 351, 1058–1061 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Melcer, R. A., Konyzheva, S., Heiblum, M. & Umansky, V. Direct willpower of the topological thermal conductance through native energy measurement. Nat. Phys. 19, 327–332 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sammon, M., Banerjee, M. & Shklovskii, B. I. Large violation of Wiedemann–Franz regulation in doping layers of contemporary AlGaAs heterostructures. Preprint at https://arxiv.org/abs/1904.04758 (2019).

  • le Sueur, H. et al. Vitality rest within the integer quantum Corridor regime. Phys. Rev. Lett. 105, 056803 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Xia, J., Eisenstein, J. P., Pfeiffer, L. N. & West, Ok. W. Proof for a fractionally quantized Corridor state with anisotropic longitudinal transport. Nat. Phys. 7, 845–848 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Pan, W. et al. Actual quantization of the even-denominator fractional quantum Corridor state at ν = 5/2 Landau stage filling issue. Phys. Rev. Lett. 83, 3530–3533 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Pan, W. et al. Experimental research of the fractional quantum Corridor impact within the first excited Landau stage. Phys. Rev. B 77, 075307 (2008).

    Article 

    Google Scholar
     

  • Kumar, A., Csáthy, G. A., Manfra, M. J., Pfeiffer, L. N. & West, Ok. W. Nonconventional odd-denominator fractional quantum Corridor states within the second Landau stage. Phys. Rev. Lett. 105, 246808 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenblatt, A. et al. Vitality rest in edge modes within the quantum Corridor impact. Phys. Rev. Lett. 125, 256803 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lifshitz, E. M. & Pitaevskii, L. P. Bodily Kinetics Vol. 10 (Elsevier Science, 1995).

  • Oreg, Y. & Finkel’stein, A. M. Interedge interplay within the Quantum corridor impact. Phys. Rev. Lett. 74, 3668–3671 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gutman, D. B. et al. Vitality transport within the Anderson insulator. Phys. Rev. B 93, 245427 (2016).

    Article 

    Google Scholar
     

  • Aita, H., Arrachea, L., Naón, C. & Fradkin, E. Warmth transport by way of quantum Corridor edge states: tunneling versus capacitive coupling to reservoirs. Phys. Rev. B 88, 085122 (2013).

    Article 

    Google Scholar
     

  • Balram, A. C., Jain, J. Ok. & Barkeshli, M. ({{mathbb{Z}}}_{n}) superconductivity of composite bosons and the 7/3 fractional quantum Corridor impact. Phys. Rev. Res. 2, 013349 (2020).

  • Halperin, B. I. & Jain, J. Ok. Fractional Quantum Corridor Results (World Scientific, 2020).

  • Ma, Ok. Ok. W., Peterson, M. R., Scarola, V. W. & Yang, Ok. Fractional quantum Corridor impact on the filling issue ν = 5/2. Preprint at https://arxiv.org/abs/2208.07908 (2022).

  • Son, D. T. Is the composite fermion a Dirac particle? Phys. Rev. 5, 031027 (2015).

    Article 

    Google Scholar
     

  • Zaletel, M. P., Mong, R. S. Ok., Pollmann, F. & Rezayi, E. H. Infinite density matrix renormalization group for multicomponent quantum Corridor programs. Phys. Rev. B 91, 12 (2015).

    Article 

    Google Scholar
     

  • Rezayi, E. H. Landau stage mixing and the bottom state of the ν = 5/2 quantum Corridor impact. Phys. Rev. Lett. 119, 026801 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Umansky, V. Y. et al. MBE progress of ultra-low dysfunction 2DEG with mobility exceeding 35 × 106 cm2/V S. J. Cryst. Progress 311, 1658–1661 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Sivre, E. et al. Warmth Coulomb blockade of 1 ballistic channel. Nat. Phys. 14, 145–148 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Park, J., Mirlin, A. D., Rosenow, B. & Gefen, Y. Noise on advanced quantum Corridor edges: chiral anomaly and warmth diffusion. Phys. Rev. B 99, 161302 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Aharon-Steinberg, A., Oreg, Y. & Stern, A. Phenomenological idea of warmth transport within the fractional quantum Corridor impact. Phys. Rev. B 99, 041302 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, J. B. Thermal agitation of electrical energy in conductors. Phys. Rev. 32, 97–109 (1928).

    Article 
    CAS 

    Google Scholar
     

  • Nyquist, H. Thermal agitation of electrical cost in conductors. Phys. Rev. 32, 110–113 (1928).

    Article 
    CAS 

    Google Scholar
     

  • Fukuyama, H. Two-dimensional wigner crystal underneath magnetic area. Stable State Commun. 17, 1323–1326 (1975).

    Article 

    Google Scholar
     

  • Maciejko, J., Hsu, B., Kivelson, S. A., Park, Y. & Sondhi, S. L. Area idea of the quantum Corridor nematic transition. Phys. Rev. B 88, 125137 (2013).

    Article 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Share post:

    Subscribe

    spot_imgspot_img

    Popular

    More like this
    Related

    Granthita Mudra (Knot Gesture): The way to Follow and Its Advantages

    Granthita Mudra, also referred to as the Knot...

    Aware Parenting with Bryana Kappadakunnel

    Typically, essentially the most difficult facet of parenting...

    Are Spring Lesson Plans Proper for Preschoolers?

    Spring is a season of renewal, colour,...