Authigenic mineral phases as a driver of the upper-ocean iron cycle


  • Tagliabue, A. et al. The integral function of iron in ocean biogeochemistry. Nature 543, 51–59 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Gledhill, M. & Buck, Okay. N. The natural complexation of iron within the marine surroundings: a overview. Entrance. Microbiol. 3, 69 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, Okay. S., Gordon, R. M. & Coale, Okay. H. What controls dissolved iron concentrations on the earth ocean? Mar. Chem. 57, 137–161 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Lauderdale, J. M., Braakman, R., Neglect, G., Dutkiewicz, S. & Follows, M. J. Microbial feedbacks optimize ocean iron availability. Proc. Natl Acad. Sci. 117, 4842–4849 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Parekh, P., Follows, M. J. & Boyle, E. A. Decoupling of iron and phosphate within the world ocean. Glob. Biogeochem. Cycles 19, GB2020 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Whitby, H. et al. A name for refining the function of humic-like substances within the oceanic iron cycle. Sci. Rep. 10, 6144 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Boyd, P. W., Ellwood, M. J., Tagliabue, A. & Twining, B. S. Biotic and abiotic retention, recycling and remineralization of metals within the ocean. Nat. Geosci. 10, 167–173 (2017).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Frew, R. D. et al. Particulate iron dynamics throughout FeCycle in subantarctic waters southeast of New Zealand. Glob. Biogeochem. Cycles 20, GB1S93 (2006).

    Article 

    Google Scholar
     

  • Ohnemus, D. C., Torrie, R. & Twining, B. S. Exposing the distributions and elemental associations of scavenged particulate phases within the ocean utilizing basin‐scale multi‐aspect knowledge units. Glob. Biogeochem. Cycles 33, 725–748 (2019).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Tagliabue, A. et al. The interaction between regeneration and scavenging fluxes drives ocean iron biking. Nat. Commun. 10, 4960 (2019).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Cullen, J. T., Bergquist, B. A. & Moffett, J. W. Thermodynamic characterization of the partitioning of iron between soluble and colloidal species within the Atlantic Ocean. Mar. Chem. 98, 295–303 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Fitzsimmons, J. N., Bundy, R. M., Al-Subiai, S. N., Barbeau, Okay. A. & Boyle, E. A. The composition of dissolved iron within the dusty floor ocean: an exploration utilizing size-fractionated iron-binding ligands. Mar. Chem. 173, 125–135 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tagliabue, A. et al. How nicely do world ocean biogeochemistry fashions simulate dissolved iron distributions? Glob. Biogeochem. Cycles 30, 149–174 (2016).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Somes, C. J. et al. Constraining world marine iron sources and ligand‐mediated scavenging fluxes with GEOTRACES dissolved iron measurements in an ocean biogeochemical mannequin. Glob. Biogeochem. Cycles 35, e2021GB006948 (2021).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Sedwick, P. N. et al. Dissolved iron within the Bermuda area of the subtropical North Atlantic Ocean: seasonal dynamics, mesoscale variability, and physicochemical speciation. Mar. Chem. 219, 103748 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Martinez-Garcia, A. et al. Iron fertilization of the Subantarctic Ocean over the last ice age. Science 343, 1347–1350 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Raven, J. A., Evans, M. C. W. & Korb, R. E. The function of hint metals in photosynthetic electron transport in O2-evolving organisms. Photosynth. Res. 60, 111–150 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Wade, J., Byrne, D. J., Ballentine, C. J. & Drakesmith, H. Temporal variation of planetary iron as a driver of evolution. Proc. Natl Acad. Sci. 118, e2109865118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tagliabue, A., Aumont, O. & Bopp, L. The impression of various exterior sources of iron on the worldwide carbon cycle. Geophys. Res. Lett. 41, 920–926 (2014).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Buck, Okay. N., Sedwick, P. N., Sohst, B. & Carlson, C. A. Natural complexation of iron within the japanese tropical South Pacific: outcomes from US GEOTRACES Japanese Pacific Zonal Transect (GEOTRACES cruise GP16). Mar. Chem. 201, 229–241 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Buck, Okay. N., Sohst, B. & Sedwick, P. N. The natural complexation of dissolved iron alongside the U.S. GEOTRACES (GA03) North Atlantic Part. Deep Sea Res. II Prime. Stud. Oceanogr. 116, 152–165 (2015).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Gerringa, L. J. A., Rijkenberg, M. J. A., Schoemann, V., Laan, P. & de Baar, H. J. W. Natural complexation of iron within the West Atlantic Ocean. Mar. Chem. 177, 434–446 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bressac, M. et al. Resupply of mesopelagic dissolved iron managed by particulate iron composition. Nat. Geosci. 12, 995–1000 (2019).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Lamborg, C. H. et al. The flux of bio- and lithogenic materials related to sinking particles within the mesopelagic “twilight zone” of the northwest and North Central Pacific Ocean. Deep Sea Res. II Prime. Stud. Oceanogr. 55, 1540–1563 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Twining, B. S. et al. Differential remineralization of main and hint parts in sinking diatoms. Limnol. Oceanogr. 59, 689–704 (2014).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Tagliabue, A. et al. Persistent uncertainties in ocean web main manufacturing local weather change projections at regional scales elevate challenges for assessing impacts on ecosystem providers. Entrance. Clim. 3, 738224 (2021).

    Article 

    Google Scholar
     

  • Gunnars, A., Blomqvist, S., Johansson, P. & Andersson, C. Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium. Geochim. Cosmochim. Acta 66, 745–758 (2002).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Feely, R. A., Trefry, J. H., Massoth, G. J. & Metz, S. A comparability of the scavenging of phosphorus and arsenic from seawater by hydrothermal iron oxyhydroxides within the Atlantic and Pacific Oceans. Deep Sea Res. A Oceanogr. Res. Pap. 38, 617–623 (1991).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Homoky, W. B. et al. Iron colloids dominate sedimentary provide to the ocean inside. Proc. Natl Acad. Sci. 118, e2016078118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Homoky, W. B. et al. Iron and manganese diagenesis in deep sea volcanogenic sediments and the origins of pore water colloids. Geochim. Cosmochim. Acta 75, 5032–5048 (2011).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Fitzsimmons, J. N. & Boyle, E. A. Each soluble and colloidal iron phases management dissolved iron variability within the tropical North Atlantic Ocean. Geochim. Cosmochim. Acta 125, 539–550 (2014).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Kunde, Okay. et al. Iron distribution within the subtropical North Atlantic: the pivotal function of colloidal iron. Glob. Biogeochem. Cycles 33, 1532–1547 (2019).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Marsay, C. M., Barrett, P. M., McGillicuddy, D. J. & Sedwick, P. N. Distributions, sources, and transformations of dissolved and particulate iron on the Ross Sea continental shelf throughout summer time. J. Geophys. Res. Oceans 122, 6371–6393 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Conway, T. M. et al. Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean utilizing iron isotopes. Nat. Commun. 10, 2628 (2019).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Boyd, P. W., Mackie, D. S. & Hunter, Okay. A. Aerosol iron deposition to the floor ocean – modes of iron provide and organic responses. Mar. Chem. 120, 128–143 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Bowie, A. R. et al. Biogeochemical iron budgets of the Southern Ocean south of Australia: decoupling of iron and nutrient cycles within the subantarctic zone by {the summertime} provide. Glob. Biogeochem. Cycles 23, GB4034 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Wu, J. & Boyle, E. Iron within the Sargasso Sea: implications for the processes controlling dissolved Fe distribution within the ocean. Glob. Biogeochem. Cycles 16, 33-1–33-8 (2002).

    Article 

    Google Scholar
     

  • Rijkenberg, M. J. et al. The distribution of dissolved iron within the West Atlantic Ocean. PLoS One 9, e101323 (2014).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Black, E. E. et al. Ironing out Fe residence time within the dynamic higher ocean. Glob. Biogeochem. Cycles 34, e2020GB006592 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Wagener, T., Guieu, C. & Leblond, N. Results of mud deposition on iron cycle within the floor Mediterranean Sea: outcomes from a mesocosm seeding experiment. Biogeosciences 7, 3769–3781 (2010).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Honeyman, B. D. & Santschi, P. H. A Brownian-pumping mannequin for oceanic hint metallic scavenging: proof from Th isotopes. J. Mar. Res. 47, 951–992 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Wu, J., Boyle, E., Sunda, W. & Wen, L. S. Soluble and colloidal iron within the oligotrophic North Atlantic and North Pacific. Science 293, 847–849 (2001).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Völker, C. & Tagliabue, A. Modeling natural iron-binding ligands in a three-dimensional biogeochemical ocean mannequin. Mar. Chem. 173, 67–77 (2015).

    Article 

    Google Scholar
     

  • Misumi, Okay. et al. Slowly sinking particles underlie dissolved iron transport throughout the Pacific Ocean. Glob. Biogeochem. Cycles 35, e2020GB006823 (2021).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Seferian, R. et al. Monitoring enchancment in simulated marine biogeochemistry between CMIP5 and CMIP6. Curr. Clim. Change Rep. 6, 95–119 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raiswell, R., Benning, L. G., Tranter, M. & Tulaczyk, S. Bioavailable iron within the Southern Ocean: the importance of the iceberg conveyor belt. Geochem. Trans. 9, 7 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • von der Heyden, B. P., Roychoudhury, A. N., Mtshali, T. N., Tyliszczak, T. & Myneni, S. C. Chemically and geographically distinct solid-phase iron swimming pools within the Southern Ocean. Science 338, 1199–1201 (2012).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Curti, L. et al. Carboxyl-richness controls natural carbon preservation throughout coprecipitation with iron (oxyhydr)oxides within the pure surroundings. Commun. Earth Environ. 2, 229 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Rauschenberg, S. & Twining, B. S. Analysis of approaches to estimate biogenic particulate hint metals within the ocean. Mar. Chem. 171, 67–77 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Twining, B. S. et al. Taxonomic and nutrient controls on phytoplankton iron quotas within the ocean. Limnol. Oceanogr. Lett. 6, 96–106 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rudnick, R. L. & Gao, S. in Treatise on Geochemistry, Vol. 3 (eds Holland, H. D. & Turekian, Okay. Okay.) 1–64 (Elsevier, 2003).

  • Shelley, R. U., Morton, P. L. & Touchdown, W. M. Elemental ratios and enrichment components in aerosols from the US-GEOTRACES North Atlantic transects. Deep Sea Res. II Prime. Stud. Oceanogr. 116, 262–272 (2015).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • GEOTRACES Intermediate Information Product Group. The GEOTRACES Intermediate Information Product 2021 (IDP2021). https://doi.org/10.5285/cf2d9ba9-d51d-3b7c-e053-8486abc0f5fd (NERC EDS British Oceanographic Information Centre NOC, 2021).

  • Kwiatkowski, L., Aumont, O., Bopp, L. & Ciais, P. The impression of variable phytoplankton stoichiometry on projections of main manufacturing, meals high quality, and carbon uptake within the world ocean. Glob. Biogeochem. Cycles 32, 516–528 (2018).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Ye, Y. & Völker, C. On the function of dust-deposited lithogenic particles for iron biking within the tropical and subtropical Atlantic. Glob. Biogeochem. Cycles 31, 1543–1558 (2017).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical mannequin for carbon and ecosystem research. Geosci. Mannequin Dev. 8, 2465–2513 (2015).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Hamilton, D. S. et al. Latest (1980 to 2015) developments and variability in every day‐to‐interannual soluble iron deposition from mud, hearth, and anthropogenic sources. Geophys. Res. Lett. 47, e2020GL089688 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Liu, X. & Millero, F. J. The solubility of iron in seawater. Mar. Chem. 77, 43–54 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Latest articles

    Related articles

    Leave a reply

    Please enter your comment!
    Please enter your name here